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Abstract

Searching and tracking are important behaviours for a mobile service robot to assist
people, to search-and-rescue and, in general, to locate mobile objects, animals or hu-
mans. Even though searching might be evident for humans, for robots it is not, since
it requires exploring, handling noisy sensors, coping with dynamic obstacles, and coor-
dination in the case of multiple agents.

In this thesis, we present several methods to search and track a person in an urban
environment. All methods were first tested extensively in simulation and then in real-
life, using one or two mobile service robots, called Tibi and Dabo. The robots have
laser rangefinders, which are used to navigate, to detect obstacles and to detect people’s
legs. Since we focus on search-and-track methods, we use existing methods for robot
navigation, for people detection and person recognition.

First tests are done with the hide-and-seek problem, in which the robot learns to
catch the hider. Concretely, a Mixed Observable Markov Decision Process (MOMDP)
model is used, in which the seeker’s location is fully observable and the hider’s location
partially observable. Since the computational complexity depends on the number of
states, we propose a hierarchical on-line method that reduces the state space by group-
ing them together. Although the method worked properly in simulation, in the real-life
experiments the results were not satisfying and the on-line policy calculation was not
fast enough to work in real-time.

To handle larger environments, work in continuous state space and run in real-time,
we propose to use an approach, the Continuous Real-time POMCP (CR-POMCP), that
does Monte-Carlo simulations to learn a policy. The method performed correctly in
simulation, but on the real robot it resulted in slow zigzag movements. Therefore, a
new method is proposed, which uses the highest probable locations, according to its
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probability map (belief). Since the belief propagation of the POMCP resembles how
a Particle Filter (PF) works, we also propose a method that uses a PF to maintain
the belief. The PF method has to handle lack of observations, therefore, we introduce
a special weight function. Both belief update methods take into account sensor and
actuator noise, false negative detections, false positive detections (for a short time) and
dynamic obstacles.

Finally, a cooperative distributed multi-agent method is presented, it makes use of
the previous belief update functions, but it uses all the agents’ observations. Next, the
search locations are assigned to explore the whole working environment, taking into
account: the belief, the distance to the search location and if another agent already
will search close to it.

Summarizing, the main contributions of this thesis are several methods to search
and track a person in an urban environment with one or more mobile service robots.
All these methods have been shown to work through a set of simulations and real-life
experiments.
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Resum

La cerca i el seguiment de persones són comportaments importants per un robot mòbil
de servei per poder assistir, trobar i ajudar als humans, i en general, per localitzar
objectes, animals o vianants. Tot i que la cerca és fàcil per als humans, no ho és per a
un robot, ja que requereix exploració, maneig de soroll de sensors, fer front als obstacles
dinàmics, i la coordinació en el cas de múltiples agents.

En aquesta tesi presentem diferents mètodes per a buscar i seguir a una persona
en un entorn urbà. Tots els mètodes han estat provats extensivament en simulació i
després en el món real, utilitzant dos robots mòbils de servei, la Tibi i en Dabo. Els
robots utilitzen sensors làser per a navegar, detectar obstacles i detectar les cames de
les persones. Atès que aquest treball es centra en mètodes de cerca i seguiment, s’han
usat els mètodes existents per a la navegació del robot, la detecció i el reconeixement
de persones.

Primerament, s’han fet proves amb el conegut joc del fet i amagar, on el robot
aprèn a trobar l’amagador. S’ha fet servir el model Mixed Observable Markov Decision
Process (MOMDP), on la posició del trobador és completament visible i la posició de
l’amagador és parcialment visible. Degut a que la complexitat computacional depèn del
nombre d’estats, es proposa un mètode jeràrquic en línia que redueix l’espai d’estats,
tot agrupant-los. Tot i que el mètode va funcionar correctament en simulació, en els
experiments reals els resultats no van ser satisfactoris, i el càlcul de la política no va
ser prou ràpid com per treballar en temps real.

Per tal de fer front a entorns de més superfície, treballar en l’espai continu i executar
en temps real, proposem un nou enfocament, el Continuous Real-time POMCP (CR-
POMCP), que fa simulacions de Monte-Carlo per aprendre una política. El mètode
va funcionar correctament en l’entorn simulat, però a l’entorn real el robot realitzava
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lents moviments en zig-zag. Per tant, es proposa un mètode nou, que utilitza els llocs
amb més alta probabilitat, d’acord amb el seu mapa de probabilitats (belief). Atès que
la propagació de les probabilitats en el POMCP és similar al funcionament d’un filtre
de partícules (PF), proposem, a més, un mètode que utilitza un PF per mantenir el
belief. El mètode de PF ha de manejar la manca d’observacions. Per tant, introduïm
una funció del pes especial. Tots dos mètodes de creences tenen en compte el soroll
dels sensors i actuadors, la detecció de falsos negatius i positius (per a un curt període
de temps) i els obstacles dinàmics.

Finalment, es presenta un mètode multi-agent distribuït cooperatiu, que fa ús de
les anteriors funcions d’actualització de la creença (belief), i a més utilitza totes les
observacions dels agents. En el proper pas, les ubicacions de cerca s’assignen mitjançant
l’exploració de l’entorn de treball, tenint en compte la creença, la distància a la ubicació
de cerca i si un altre agent ja buscarà a prop d’ella.

En resum, les principals contribucions d’aquesta tesi són diversos mètodes per a la
cerca i seguiment d’una persona en un entorn urbà amb un o més robots de serveis
mòbils. Tots aquests mètodes han demostrat que funcionen a través d’un conjunt de
simulacions i experiments en la entorn real dinàmics.
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Resumen

La búsqueda y el seguimiento de personas son comportamientos importantes para un
robot móvil de servicio para poder asistir, buscar y ayudar a la gente, y en general,
para localizar un objeto, animal o humano. Aunque la búsqueda puede parecer muy
fácil para los humanos, para los robots no lo es, ya que requiere explorar, manejar ruido
de sensores, enfrentarse con obstáculos dinámicos y la coordinación en el caso de haber
más agentes.

En esta tesis, presentamos diferentes métodos para buscar y seguir a una persona en
un entorno urbano. Todos los métodos han sido probados excesivamente en simulación
y en experimentos reales, usando uno o dos robots móviles de servicio, Tibi y Dabo. Los
robots tienen localizadores láser, los cuales se usan para navegar, detectar obstáculos y
detectar piernas. Ya que el principal enfoque en este trabajo son los métodes de buscar-
y-seguir, utilizamos métodos existentes para la navigación del robot, la detección de
personas y el reconecimiento del humano.

Las primeras pruebas se hicieron con el juego de escondite, en el cual el robot
aprende a buscar el ocultador. Concretamente, usamos un modelo MOMDP, donde
la posición del buscador es completamente observable y la posición del ocultador lo
es parcialmente. Como la complejidad computacional depende del número de esta-
dos, proponemos un método en línea jerárquica, que reduce el espacio de los estados
agrupándolos. Aunque el método funcionó correctamente en simulación, en los experi-
mentos reales los resultados no fueron satisfechos y el cálculo de la política en línea no
fue suficientemente rápido.

Para poder trabajar en áreas largas, espacio continuo y en línea, proponemos un
enfoque, el Continuous Real-time POMCP (CR-POMCP), que hace simulaciones de
Monte-Carlo para aprender la política. El método funcionó correctamente en simu-
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lación, pero con el robot real resultaba en movimientos lentos en forma zigzag. Por eso,
otro método fue propuesto, el cual usa las posiciones con la probabilidad más alta según
el mapa de probabilidades (belief). Como la propagación del belief se parece mucho a
como funciona un PF, proponemos un método que usa un PF para mantener el belief.
El método PF tiene que manejar la falta de observaciones y por eso introducimos una
función del peso especial. Los dos métodos para actualizar el belief tienen en cuenta
el ruido de los sensores y actuadores, falsos negativos y positivos (durante un periodo
corto de tiempo) y obstáculos dinámicos.

Finalmente, se presenta un método cooperativo y distribuido para multi agentes,
que usa el mapa de probabilidades (belief), y éste usa todas las observaciones. Después,
se asigna las posiciones de búsqueda a los agentes, explorando el entorno, y teniendo
en cuenta: la probabilidad de la posición, la distancia a la posición y si otro agente ya
buscará cerca del lugar.

En resumen, la contribución más importante de esta tesis son diferentes métodos
de búsqueda y seguimiento de una persona en un entorno urbano con uno o más robots
de servicio móviles. Todos estos métodos fueron comprobados en simulación y en
experimentación real.
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Samenvatting

voor een mobiele servicerobot om mensen te kunnen assisteren, zoek- en reddingsoper-
aties uit te kunnen voeren en, in het algemeen, om mobiele objecten, dieren of mensen
te lokaliseren. En hoewel zoeken evident is voor de mens, is dit niet het geval voor
robots. Het vereist namelijk verschillende vaardigeheden zoals verkennen, omgaan met
ruis in de sensoren en dynamische obstakels en coördinatie in het geval van meerdere
agenten.

In deze thesis presenteren we verschillende methoden om een persoon te zoeken en te
volgen (search-and-track) in een stedelijke omgeving. De methoden zijn eerst getest met
simulaties en daarna met twee echte mobiele servicerobots, genaamd Tibi en Dabo. De
robots hebben laser rangefinders om te navigeren en om obstakels en benen van mensen
te detecteren. Omdat we ons richten op het zoeken en volgen van mensen gebruiken we
bestaande methoden voor de robotnavigatie, detectie van personen en het herkennen
van de gezochte persoon.

De eerste testen gedaan met het spel hide-and-seek, waar de robot leert om de
persoon te vinden. Een Mixed Observable Markov Decision Process (MOMDP) is
gebruikt, waar de positie van de robot (zoeker) volledig waarneembaar is en die van de
persoon (verstopper) gedeeltelijk. Omdat de berekeningscomplexiteit van het aantal
staten afhangt, stellen we een hiërarchische online methode voor die de staatruimte
verkleind door het groeperen van staten. Hoewel de methode goed werkt in simulatie,
waren de resultaten van de experimenten met de robots minder goed. Verder was het
online genereren van de politiek niet snel genoeg.

Om in grote omgevingen te kunnen werken en continue staatruimte te gebruiken
in real-time, hebben we de Continuous Real-time POMCP (CR-POMCP) voorgesteld.
Dit algoritme gebruikt Monte-Carlo simulaties om de politiek (beste actie voor een
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bepaalde staat) te leren. De methode werkte goed in de simulaties, maar de robot
maakte in de experimenten zigzaggende bewegingen. Om deze reden hebben we een
nieuwe methode voorgesteld die gebruik maakt van een waarschijnlijkheidskaart (belief)
over de lokatie van de persoon. Omdat de propagatie van de POMCP lijkt op hoe een
Particle Filter (PF) werkt, stellen we ook een methode voor die een PF gebruikt om de
belief bij te houden. De PF methode moet om kunnen gaan met missende observaties
en we introduceren daarom een speciale gewichtsfunctie. Beide belief update methoden
houden rekening met sensor en actuator ruis, incorrecte negatieve detecties, incorrecte
positieve detecties (gedurende een korte tijd) en dynamische obstakels.

Als laatst presenteren we een coöperatieve multi-agent methode die gebruik maakt
van de genoemde belief update methoden, maar tevens gebruik maakt van de ob-
servaties van alle agenten. Vervolgens worden de zoeklocaties toegekend om de hele
omgeving te verkennen waarbij rekening gehouden wordt met: de belief, de afstand tot
de zoeklocatie en of een andere agent al dichtbij de lokatie gaat zoeken.

Samenvattend zijn de belangrijkste bijdragen van deze thesis de verschillende meth-
oden om personen te zoeken en te volgen in een stedelijke omgeving met één of meer
mobiele servicerobots. Alle methoden zijn getest met simulaties en met experimenten
met echte robots.
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Eq. 6.3) is affected.

dmax_search The maximum range in which a Highest Belief point is searched.
dmax The maximum tree search depth for the POMCP policy calculation.
dv,max The maximum distance for the visibility probability (Eq. 5.7).
dsh The shortest path distance between s and h.
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Nomenclature

ecount The expand count of a POMCP indicates how many node visits are
required before a subtree is expanded.

nbelief The number of belief points.
nhb The number of HB points.
nparticles The number of particles.
nsim The number of simulations to generate the policy for a POMCP

model.
pfalse_neg The probability of a false negative detection.
pfalse_pos The probability of a false positive detection.
psee_occ The probability of seeing the person even though the person is oc-

cluded.
pv,max The maximum of the visibility probability (Eq. 5.7).
po A probability of the correctness of observation o; this is used to indi-

cate how trustworthy a certain observation is.
tupdate The time between updates of the goal location for the robot.
wcons The particle weight (Eq. 5.10), which is given when the person is not

visible, but the observation is consistent.
winc Used in the particle weight (Eq. 5.10), which is given when the person

is not visible and the observation is not consistent.
Prand A function that returns a uniformly random value in [0, 1].
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Glossary

α-vector The α-vector represents the Value Function for a specific action a over the
|S|-dimensional hyper-plane, where S is the set of discrete states.

Multi-agent HB-CR-POMCP Explorer A multi-agent method with distributed
coordination that uses the HB-CR-POMCP and an explorer to search and track
a person.

ACT-R Adaptive Control of Thought-Rational; a cognitive architecture by [Anderson
et al., 2004].

adversarial Adversarial games include an opponent that wants to flee and another
that wants to attack the target, e.g. pursuit-evasion.

agent An (intelligent) agent (IA) is an autonomous entity that observes the environ-
ment through its sensors, and acts upon it using actuators. Moreover, it has a
goal (i.e. is rational). Note that this can be a robot or a person.

anytime An anytime algorithm can return a result without having finished completely,
although leaving it more time normally allows it to reach a better solution. An
anytime POMDP solver, for example, can return a not yet converged policy.

backup In the POMDP policy calculation, backup refers to updating the values (ex-
pected reward) for the states, using the values of the future states. The Bellman
Equation can be used as backup function in MDPs and POMDPs to update the
state values.

base In the hide-and-seek game the base is the starting location of the seeker, while
the hider wins the game when reaching the base without being caught.
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Glossary

belief Since in POMDPs the state is not known, a probability distribution, the belief,
is maintained. In the case of a discrete state space, a probability b(s) over each
state s can be maintained. In the POMCP model, the belief is stored as a list
of possible states, which makes it easy to have continuous states (like in the CR-
POMCP). The belief is used in this work to refer to the probability of the location
of the tracked person.

belief space The space of all belief is an infinite space with |S| dimensions, S being
the set of discrete states.

Bellman Equation The Bellman Equation [Bellman, 1957, Eq. 4.2] is used, for ex-
ample, to calculated the expected reward for the MDP or POMDP models.

cell A (grid) cell refers to one element of a discrete grid. In this thesis we use equally
sized square cells, but a cell can have any shape.

CR-POMCP Searcher & Tracker Amethod to search and track a person that uses
the CR-POMCP. In [Goldhoorn et al., 2014] this method is called the Adaptive
CR-POMCP Follower.

Dabo This is a humanoid robot, like his "sister" Tibi. See for more information Sec-
tion 3.3.

detect To detect a person means that you can localise a person without necessarily
knowing which person it is.

dynamic obstacle An obstacle that can move and which is not on the map, for ex-
ample an agent, a car, a truck, etc.

Dynamic Programming Dynamic Programming (DP) is used to solve complex prob-
lems by breaking them into smaller problems and by storing the (partial) solu-
tions. The Value Function of an POMDP, for example, is calculated with Dy-
namic Programming, using the Bellman Equation.

explore Exploring can be done to find something or someone, or to discover unknown
environments. In the search-and-track task, we do exploration in order to find
the person, which can be done with one agent or more.
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Glossary

follow To follow a person means staying close to him/her, at the back-side of the
person, trying to staying in his/her path. Here we also use tracking to indicate
that we follow the person.

goal A goal, in this thesis, is a destination point on the map, where the agent is
assigned to go to. This goal can, for example, be the location of the person or a
location to explore the environment.

HB-CR-POMCP Searcher & Tracker Amethod to search and track a person that
uses the Highest Belief over the belief of the CR-POMCP. In [Goldhoorn et al.,
2014], this method was called Adaptive HB-CR-POMCP Follower.

HB-PF Searcher & Tracker A method to search and track a person that uses the
Highest Belief over the belief maintained with a PF.

hide-and-seek A game where a seeker wins when it catches the hider, while the hider
wins when it reaches the base without being caught. The game ends in a tie if
the game has not finished within a maximum time (H).

hider The person that is looked for by the seeker; this name is mainly used in the
hide-and-seek game.

Hierarchical MOMDP A hierarchical MOMDP that groups neighbouring states, to
reduce the number of state at the top level. The policy is learned for the top
MOMDP model.

highest belief point A point in the belief grid, which has the highest probability.
Note that we use a discrete state, or—in the case of continuous states—a point
in a discretized belief space.

marker A marker, also called tag, is a visual pattern that is used to recognise the
person.

mobile robot A robot that can move itself in its environment, using wheels or legs,
for example.

Monte-Carlo Monte-Carlo methods normally use random sampling to approach a
desired function.
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Glossary

multi-agent A multi-agent system (MAS) is a system that has several interacting
(intelligent) agents.

Multi-agent HB-PF Explorer A multi-agent method with distributed coordination
that uses the HB-PF and an explorer to search and track a person.

non-adversarial Non-adversarial games do not include an opponent that wants to
flee for any of the agents, e.g. search-and-track.

obstacle An obstacle blocks an agent’s path and its vision, so the agent cannot pass
nor see through.

off-line Off-line learning methods are method for which the solution is learned before
it is being used, for example the policy in RL.

on-line On-line learning methods refer to methods that learn while they are being
used, in contrast to off-line methods.

person In this thesis, in most cases, a person refers to the tracked person.

policy In Reinforcement Learning models, such as MDPs, the policy π indicates the
best action to do in a certain state (for MDPs) or belief state (for POMDPs).

pursuit-evasion An adversarial game, like hide-and-seek, where the pursuer is trying
to catch the evader, while the latter is trying to flee.

Random Hider A hider that takes random actions.

recognise To recognise a person means that she/he is detected and also identified.

robot A robot is a machine that can carry out a complex series of actions automati-
cally. In this work, robots are mobile robots that act like a seeker agent.

search Estimation of the position of the tracked person, also known as one-sided
search.

search-and-rescue An application of the search problem, where a person is rescued
by one or more agents.
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Glossary

search-and-track A scenario where one or more agents look for a tracked persons,
and when found, they track him/her.

See All Follower A follower that sees all, also through obstacles.

seeker The agent that looks for the hider; this name is mainly used in the hide-and-
seek game.

Simple Follower A follower that goes to the last position were the person was seen.

Smart Hider A heuristic hider that greedily chooses the best action (subsection 4.8.2).

Smart Seeker A heuristic seeker that greedily chooses the best action (subsection 4.8.1).

solver A solver calculates the policy for a Reinforcement Learning model.

state space The set of possible states; each state can have one or more variables,
and each state variable can be continuous or discrete. The state space S then
contains the Cartesian product of the state variables (SA, SB, SC , . . . ): S =
SA × SB × SC × . . .

static obstacle An obstacle that is not dynamic, i.e. does not move. In this work,
the locations of the static obstacles on the map are known beforehand.

target The person, object or animal that is being searched for.

Tibi A humanoid robot (Dabo’s "sister") with a Segway as base, cameras, laser range
scanners, a movieble head, moveable arms, etc. See for more information Sec-
tion 3.3.

track To keep track of the person means to know where the person is continuously,
but here we also use it to indicate that we follow the person.

tracked person The person for whom the seekers are looking and whom is being
tracked.

Value Function In an MDP or POMDP model the Value Function V (s) gives the
expected reward for the state s.
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Chapter 1

Introduction

Service robots have gotten more interest in recent years, especially since technology is
now able to create humanoid robots which are able to navigate with people. Robots
will be able to assist people in their daily life, either assisting with household tasks,
guiding people, or even rescuing humans. In all of these tasks it is important to be able
to find the person, and in many assistive tasks, the following (tracking) functionality
is important.

In this work, we develop a searching and tracking behaviour for mobile service
robots that can work in urban environments. However, the presented search-and-track
methods can also be applied to search and track objects, or to search-and-rescue in
a destroyed building, for example. But, depending on the task and environment, a
different robot should be used.

For us humans, both searching and tracking seem relatively easy tasks, however,
they require several cognitive tasks, such as planning, navigation and reasoning. When
we want to teach these tasks to a young child or a robot, we realize that other issues
have to be taken into account. We need to know about occlusions, the environment,
navigation and the movement behaviour of the person we are looking for. Furthermore,
working in the real world with robots means having to handle noise of the sensors and
actuators, false negative and false positive sensor detections and other unexpected
changes in the environment, such as other moving people or obstacles.

In this work, we present several methods to search and track a person with a mobile
robot. First, we start with a simplification of the problem, the hide-and-seek game,
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1.1 Motivation

after which, we study the problem to more realistic urban environments. Finally, we
introduce multi-agent cooperation, by having several robots execute the search-and-
track task.

The rest of the introduction discusses the motivation, the problem definition and
constraints, the objectives and main contribution, and we finish with an overview of
the thesis.

1.1 Motivation

In order to make humanoid service robots be able to serve a person, the robot should
be able to find him/her. At the same time, the robot should be able to follow (track)
a person to serve him/her. There are several applications of searching persons, such as
to:

• bring the person something (e.g. a package, or food in a restaurant [Cheong et al.,
2016]);

• inform the person of something [Satake et al., 2013];

• find the person to guide him/her [Garrell and Sanfeliu, 2012];

• search-and-rescue [Micire, 2008].

A simplification of the real-world problem of finding people is the hide-and-seek
game or pursuit-evasion [Chung et al., 2011], where there are one or more agents search-
ing and one or more hiding. These are well known games, which have been used in a
large amount of, mostly theoretical, works to test and compare planning algorithms.

Following or tracking of a person might seem to be an easy task, but it requires
the robot to see the person, know where the person is going to, or both. Continuous
vision and recognition of the person by the robot is difficult because of: obstacles—
either static or dynamic—blocking the robot’s vision; and sensory noise. Tracking and
following is also an important social robot behaviour when helping the person (carrying
something for him/her, for example), or having the person guide it to another place.
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1.2 Problem Definition and Constraints

1.2 Problem Definition and Constraints

Before explaining the problem in depth, we will give some definitions and problem
constraints.

1.2.1 Definitions

The main goal of this thesis is to develop and try several methods to search and track
a person with one or more social mobile robots. While finding these methods, we focus
on minimizing search time for searching, and the objective for tracking is to get close
to the tracked person and keep him/her visible as much time as possible.

In this work, we use the terms person, tracked person or target for the person that
is being searched for, and agent, seeker or robot for the searcher and follower. We also
refer to agent as robot, since we use a mobile robot to do the searching and following.
Moreover, we focus on finding strategies for the seeker and tracker agent, but we do
not focus on the tracked person or hider. In the hide-and-seek game, the robot is the
seeker and the person the hider. Finally, the terms track and follow are also used for
the same action: trying to keep a minimum distance to the person and trying to have
him/her in the field of view as long as possible.

1.2.2 Problem Constraints

This subsection describes the assumptions made for the model in simulation, and the
limitations we came across while testing our model in real-life scenarios. There are at
least two types of problem constraints: the first derives from the robot’s perception
and actuators; the second is the result of human behavioural reactions to the robot’s
instructions. The effects of these limitations on our study are summarized below:

• Safety: Although the robots have sensors to detect close obstacles or people,
they are not guaranteed to see the person, since the sensors have a limited field
of view, therefore, restrictions were put on the maximum speed and the distance
to (dynamic) obstacles:

– For safety reasons the robots were not allowed to go faster than around
1 m/s.
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1.2 Problem Definition and Constraints

– The robots were kept at a minimum distance of people, other robots, and
any detected obstacles.

– The person being followed was asked not to walk too fast (i.e. less than
1 m/s).

• Map: we assumed the map of the environment to be known beforehand in order
to plan and predict.

– The location of static obstacles were known (walls, doors, objects, etc.).

– The size of the obstacles were measured in discrete cells, in order to do not
have too many states for planning (since the map is a discrete grid).

– The maps were assumed to be flat, i.e., we did not assume there to be any
height difference in the area where the robot navigated.

• Vision: the robot’s vision is limited, and since our main-focus is not computer
vision we made some simplifications:

– To recognise the person we made use of an artificial tag since our research
was focused on the combined searching and tracking.

– The orientation of the robots was not taken into account to reduce the state
space and therefore, simplified the planning; for that reason a 360◦ view was
assumed.

– The static obstacles were assumed to occlude everything and did not allow
to let anyone pass.

– Dynamic obstacles were simulated to only occlude like an obstacle, but they
did not block the robot’s path, i.e. they could pass through, in order not to
make the simulator too complex.

During the different experiments other specific problem constraints were considered,
which will be discussed in each experimental section of this document.
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1.3 Objectives and Main Contributions

As has been mentioned before, the main goal of this thesis is to search and track a
specific person in a known urban environment using one or more mobile robots, taking
into account the following issues:

1. Handling large maps: the robot should be able to search-and-track on large
maps, such as the Barcelona Robot Lab on the North UPC campus (Section 3.1).

2. Dynamic environments: the algorithm should be able to handle dynamic en-
vironments in which obstacles or persons can move, i.e. appear and disappear.

3. Continuous space: the robot should work in the continuous space, instead of
discrete grid space, to handle real-life environments.

4. Multiple agents: searching for several persons or use several agents to search-
and-track (cooperation).

Now, we will comment the contributions shortly.

1.3.1 Hide-and-seek model

First, we focus on a simplification of the search-and-track problem: the hide-and-seek
game, in which the seeker has to catch the hider, while the hider can win by reaching
the base; the game ends in a tie when the maximum time is reached. We propose
several models to play the game as a seeker, see Chapter 4. The methods, simulations
and real-life experiments are published in:

– Goldhoorn, A., Sanfeliu, A. and Alquézar, R. (2013a). Comparison of MOMDP and heuristic
methods to play hide-and-seek. In Gibert, K., Botti, V. J., and Bolaño, R. R., editors, CCIA,
volume 256 of Frontiers in Artificial Intelligence and Applications, pages 31–40. IOS Press.
https://doi.org/10.3233/978-1-61499-320-9-31

– Goldhoorn, A., Sanfeliu, A. and Alquézar, R. (2013b). Analysis of methods for playing human
robot hide-and-seek in a simple real-life urban environment. In ROBOT (2), volume 253 of
Advances in Intelligent Systems and Computing, pages 505–520. Springer. https://doi.org/10.
1007/978-3-319-03653-3_37
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1.3.2 Hierarchical MOMDP

While creating hide-and-seek methods that make use of the off-line Reinforcement
Learning model Mixed Observable Markov Decision Process (MOMDP), no large maps
could be used due to the computational complexity. Therefore, we propose an on-line
hierarchical model that reduces the number of states. This is explained in detail in
Section 4.7 and it is published in [Goldhoorn et al., 2013a,b].

1.3.3 Search-and-track models

After having gained knowledge of the limitations of RL methods and the hide-and-seek
game, we focus on larger environments in continuous state space, which is explained in
Chapter 5 and published in:

– Goldhoorn, A., Garrell, A., Alquézar, R. and Sanfeliu A. (2014). Continuous real time pomcp to
find-and-follow people by a humanoid service robot. In Proceedings of the IEEE-RAS Interna-
tional Conference on Humanoid Robots, pages 741–747. https://doi.org/10.1109/HUMANOIDS.
2014.7041445

– Goldhoorn, A., Garrell, A., Alquézar, R., and Sanfeliu, A. (2017b). Searching and tracking
people in urban environments with static and dynamic obstacles. Robotics and Autonomous
Systems, 98(Supplement C):147–157. https://doi.org/10.1016/j.robot.2017.06.005

1.3.4 CR-POMCP

Since the previous model, MOMDP, could not be used for large maps, we decided to
use a Partially Observable Monte-Carlo Planning (POMCP) model, which makes use of
Monte-Carlo simulations. The proposed method is the Continuous Real-time POMCP
(CR-POMCP) model, which works on-line; it is explained in Section 5.5 and published
in [Goldhoorn et al., 2014, 2017b]. Also some other variants of the CR-POMCP method
were presented, since the RL method alone did not work well enough on the real robot.

1.3.5 Particle Filter

Instead of using the position estimation of the CR-POMCP, we developed a method
that is based on a Particle Filter (PF). We propose a PF version that takes into ac-
count the lack of observations, i.e. not seeing the person. This method is detailed in
Section 5.7, and published in [Goldhoorn et al., 2017b].

6

https://doi.org/10.1109/HUMANOIDS.2014.7041445
https://doi.org/10.1109/HUMANOIDS.2014.7041445
https://doi.org/10.1016/j.robot.2017.06.005
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1.3.6 Multi-agent Search-and-track

Finally, to comply with the last objective, we propose a cooperative distributed method
to search-and-track with several agents, using either the PF or CR-POMCP method.
This method is explained in Chapter 6 and it is published in:

– Goldhoorn, A., Garrell, A., Alquézar, R. and Sanfeliu A. (2016c). Un nuevo método cooperativo
para encontrar personas en un entorno urbano con robots móviles. In XXXVII Jornadas de
Automática, pages 206–213, Madrid, Spain.

– Goldhoorn, A., Garrell, A., Alquézar, R. and Sanfeliu A. (2017a). Searching and tracking people
with cooperative mobile robots. Autonomous Robots. https://doi.org/10.1007/s10514-017-9681-6

1.4 Thesis Overview

In this thesis, the search for a search-and-track method for real mobile service robots
is discussed, including the encountered problems. This thesis exists out of several
chapters; here, an overview of the contents of each chapter is given:

• Chapter 1 gives an introduction of the problem, indicating the motivation, ob-
jectives, main contributions, problem constraints and derived publications.

• Chapter 2 reviews the state of the art of search-and-track, search, track, hide-
and-seek, and related games and problems.

• Chapter 3 details the experimental settings, such as the used robots, the environ-
ments where the experiments were done, and the used hardware and algorithms.

• Chapter 4 defines our first hide-and-seek methods using an MOMDP for a small
discrete map. Also a Hierarchical MOMDP method is presented, which reduces
the amount of states by projecting a group of states to a top state. The method
was tested in simulation and in a small outdoors environment with real people.

• Chapter 5 presents search-and-track methods that are able to work in large en-
vironments and in continuous state space. To handle these larger environments,
a RL method—that does Monte-Carlo simulations—was used: Partially Observ-
able Monte-Carlo Planning (POMCP). We adapted the method for continuous
space and we run it on-line, resulting in the Continuous Real-time POMCP (CR-
POMCP). When testing the RL method with the real robot, several problems
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1.4 Thesis Overview

were discovered, which resulted in adaptations of the method where the probabil-
ity map (belief) of the person location was used to find the person. The location
with the Highest Belief was used as goal for the robot to go to. A second method
to maintain a probability map is based on the Particle Filter (PF). All meth-
ods were tested extensively in simulations, and the best were tested in real-life
experiments in large urban environments.

• Chapter 6 presents a multi-agent method that is able to search and track co-
operatively, and at the same time is able to work on an individual level, thereby,
making it more robust. The method explores the most probable locations of the
person, according to the belief. Simulations with up to five agents were done, and
real-life experiments with two mobile robots showed real cooperative search-and-
track behaviour.

• Chapter 7 gives the thesis’ conclusions and future work.
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Chapter 2

State of the Art

Search-and-track is an important robot behaviour, for example, for Human Robot In-
teraction (HRI), search-and-rescue, RoboCup soccer and theoretical games like pursuit-
evasion. For example, [Satake et al., 2013] proposed a method for a mobile social robot
to approach people that were not busy. Kanda et al. [2007] focused on estimating
the relationship between children, using the time they spent together, and they tried
to generate a long-term interaction with the children by calling them by their names,
adapting its interaction to the child, and confiding personal matters. Mitsunaga et al.
[2008] tried to learn correct interaction behaviour per person, such as interaction dis-
tance, gaze meeting and motion speed. They made use of Reinforcement Learning
(RL) with the human’s unconscious signals as feedback, such as gazing and movement.
Search-and-rescue focuses on tasks to rescue people from disaster areas, as explained
in subsubsection 2.2.1.1.

In this thesis, we present methods to do search-and-track with mobile robots in a
real-life urban environment. Searching and tracking has been researched for many years,
but much less research has been done in the combination, search-and-track. Therefore,
we discuss the work done in searching and tracking separately, and thereafter, the
combination. First, we comment the different characteristics of search-and-track related
tasks in Section 2.1, then, we explain shortly the different search game variants. Finally,
single agent and multi-agent approaches to search and track are discussed in Sections 2.3
and 2.4 respectively.
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2.1 Taxonomy and Characteristics

Figure 2.1: The different parameters for autonomous search models, as indicated by
Chung et al.. [Taken from Chung et al., 2011]

2.1 Taxonomy and Characteristics

There are a large number of tasks and games related to search, track and search-and-
track. Many approaches to solve these tasks are commented in the surveys of [Chung
et al., 2011] and [Robin and Lacroix, 2016]. In the survey of [Robin and Lacroix, 2016],
they give a taxonomy of the different search-and-track tasks. Following this taxonomy,
the main focus of this thesis is Probabilistic Search for the searching part, and Following
for the tracking part.

In the survey of [Chung et al., 2011], they set out the different parameters of the
different autonomous search models, as shown in Figure 2.1. The parameters can be
divided in searcher, target and environment. The searcher is defined by the number of
agents to search, their motion model and their sensor model. The environment model
can be discrete or continuous, and there can be one or more targets. Finally, the target
motion model is very important for the search; a target can be a stationary or mobile
object or a person. Also the target’s behaviour is important, a target which wants to
flee (i.e. adversarial) is more difficult to catch than a target which moves independently
from the seeker (non-adversarial). The characteristics for the search-and-track methods
presented in this thesis are listed in Table 2.1.
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Table 2.1: The values of the autonomous search parameters indicated by [Chung et al.,
2011] for the methods presented in this thesis.

Parameter Value
Number of searchers multiple & single searchers
Searcher motion constrained bounded speed
Sensor model imperfect detection with false positive and false negative errors
Environment discrete finite graph
Number of targets single target
Target motion mobile, random walk with bounded speed and unbounded turning angle

2.2 Search Variants

In the previous section, we have made a distinction between the different search types
and characteristics, here we comment different types of problems related to search-and-
track. First, we comment search problems, then, track, and finally, search-and-track.

2.2.1 Search

There are different searching problems, which mainly depend on the behaviour of the
person or object to be found, but also on the environment and the seeker’s behaviour,
as explained in Section 2.1. For example, adversarial search is done in pursuit-evasion
problems, while non-adversarial search is done in search-and-rescue and in our problem,
search-and-track.

2.2.1.1 Search-and-rescue

Robotic research has the potential to help humans in the domain of Urban Search and
Rescue (USAR). In this task, robots support humans to make a situational appreciation
of the disaster site and to rescue people. In cases of disasters—such as hurricanes,
earthquakes, fires or other dangerous situations—human rescuers should not be put
into extra danger, therefore, robots could be sent. For instance, in [Micire, 2008],
several dangerous situations are discussed and they show how a remotely controlled
robot is used to investigate the situation and to find survivors.

Search-and-rescue researches robots that participate in: 1) finding and rescuing
victims in the rubble or debris as efficiently and safely as possible [Murphy, 2003], and

11



2.2 Search Variants

2) ensuring that human rescue workers’ lives are not put at great risk [Doroodgar et al.,
2010]. Generally, USAR environments are highly cluttered and all robots that operate
in these environments do not have a priori information about landmarks in the scene.
These conditions make it extremely difficult for robots to autonomously navigate in the
scenes and identify victims. Therefore, current applications of mobile robots in USAR
operations require a human operator in the loop to guide a robot remotely.

The SHERPA project [Marconi et al., 2012] focuses on search-and-rescue activities
using a mixed group of ground and aerial vehicles, and humans. There is also a search-
and-rescue track in the RoboCup league [Sheh et al., 2016], which focuses on searching
in simulated and real-world environments.

2.2.1.2 Hide-and-seek

Johansson and Balkenius [2005] presented a simplification of the real-world problem of
finding people, the hide-and-seek game, where there is an agent seeking, and there are
one or more players hiding. The hide-and-seek game requires a high number of cogni-
tive functions, including search and navigation to find suitable hiding places; context
sensitive control of attention, depending on the phase of the game; sequentiation of be-
haviours in relation to the structure of the game; coordination with the other players;
emotional control and control of emotional reaction; anticipation of the behaviours of
others; verbal and non-verbal communication

Moreover, many works on RL use the game tag as a benchmark to compare POMDP
solvers [Araya-Lopez et al., 2010, Kurniawati et al., 2008, Ong et al., 2010]. This game
exists out of a robot that has to tag one or more fleeing agents. In this thesis, we
have used the hide-and-seek game to create a controlled experimental environment for
searching and tracking.

2.2.1.3 Pursuit-evasion

In the pursuit-evasion game, also called adversarial search, a pursuer tries to catch an
evader, while the latter tries to escape. The evader is often treated as having a worst-
case behaviour—i.e. it has infinite speed and complete knowledge about the pursuer
and the environment—but, for practical applications (e.g. mobile service robots) an
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average-case behaviour—i.e. having a model of the pursuer and trying to minimize the
catch time—is better [Chung et al., 2011, Hollinger et al., 2010]. The game can be
extended to a multi-agent problem, having several pursuers that try to catch one or
more evaders [Robin and Lacroix, 2016], where the game is used to study cooperative
multi-agent systems. Pursuit-evasion is related to the hide-and-seek game, but in the
latter the evader does not necessarily start hidden, nor is there a goal to go to.

There are several variants of pursuit-evasion [Chung et al., 2011, Robin and Lacroix,
2016]:

• In the edge searching problem [Borie et al., 2011], several pursuers have to clear
a graph from several fast evaders.

• In the hunter-prey problem [Abed-alguni et al., 2015], the hunters and preys start
randomly on a grid map, and they can only move in four directions.

• In the cop-and-robber game [Chung et al., 2011], the agents know each other’s
positions, and the problem’s focus is to calculate the minimum number of cops
necessary to catch the robber.

• In the hunter-and-rabbit game, the agents can not observe each other.

• In the lion-and-man game, the lion has to catch the man, and the agents have
a maximum speed. It is originally played in a circular arena without obstacles.
A strategy is to stay at the same radius as the man while trying to move closer.
Also different environment shapes have been tried, and according to [Bhadauria
et al., 2012], three lions are enough to capture a man in any polygon-shaped
environment.

• In the competitive search problem, several teams of searchers compete on locating
a static object [Otte et al., 2016].

2.2.2 Track

Robin and Lacroix [2016] define following as using a single agent to search a single
target. In other works and in this thesis, however, we use tracking and following for
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the same: seeing the target and being close to the target using either one or more
agents.

Tracking has been extensively discussed in different areas, for example the SPENCER
project has as goal perception and tracking of people [Linder et al., 2016]. Furthermore,
following can also be done to navigate through populated environments [Stein et al.,
2013]. Many works that treat guiding and following do not handle situations in which
the person to be followed is hidden, at most partly occluded [Martinson, 2014].

2.2.3 Search-and-track

In contrast to pursuit-evasion, in search-and-track the target is non-adversarial, i.e. we
assume the person to not escape from the seeker. Still, the target may not know that
he/she is being searched for.

Searching and tracking of a ball is done in the RoboCup soccer challenge [Ferrein
and Steinbauer, 2016]. They have several leagues of different sizes, in which a team of
robots plays soccer against another team. Their final goal is to win against the FIFA
world championship with a team of humanoid robots by 2050.

2.3 Single Agent Approaches

In this section, several single agent approaches to tackle the search, track and search-
and-track problems are discussed.

2.3.1 Search

First, we discuss several approaches related to searching and locating a target—which,
in the most cases, is a person, but also can be an object.

2.3.1.1 Reinforcement Learning

In our first method (Chapter 4) we use RL to learn a strategy for the robot to play
hide-and-seek. First, a model of the game is defined, which is then used by the RL
solver to calculate a policy, i.e. the best action to do in each state. More about RL
models and solvers will be explained in Section 4.2.
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Partially Observable Markov Decision Process: A Partially Observable Markov
Decision Process (POMDP) is used to define a problem, which contains states (e.g.
the location of a target), actions (to change the state) and rewards (indicate how
good a state is). The rewards guide the learning process, for example, having found
the target would be a high reward in the search problem. Since the full state is not
observable (because the target is not always visible), observations are used to calculate
a probability map over the state space (the belief). Many works, like ours, use POMDPs
to model the search problem.

POMDP models have been successfully applied to various robotic tasks [Cassandra
et al., 1996, Spaan and Vlassis, 2004], but unfortunately, computing an optimal policy
exactly is generally intractable [Papadimitriou and Tsisiklis, 1987], because the size
of the belief space grows exponentially with the number of states. And at the same
time, looking one time step further into the future, requires considering not only each
possible action, but also each possible observation. Hence, the cost of computing the
solution for a POMDP grows exponentially with the desired planning horizon.

In many works that present POMDP models and solvers, the game tag is used as a
benchmark. In a game with two players, the state is the cross product of the possible
locations of both players and an extra state value tagged; for a field of 29 free cells this
gives 870 states. To arrive to a good policy, the Point-Based Value Iteration (PBVI)
solver took 50 hours [Pineau et al., 2003]; the solver of [Spaan and Vlassis, 2004] took
slightly less than half an hour; the Successive Approximations of the Reachable Space
under Optimal Policies (SARSOP) solver took 6 s [Kurniawati et al., 2008]; and the
SARSOP solver with the Mixed Observable Markov Decision Process (MOMDP) model
took less than 5 s [Ong et al., 2010]. For a tag game of two seekers, on a field with
24 free cells, the number of states is 14 400. Finding a good policy for SARSOP took
on average 1.5 hour, yet when using an MOMDP it took about 0.5 hour. Also [Araya-
Lopez et al., 2010] used MOMDPs to simulate the hide-and-seek problem, however they
only used small maps of up to 7× 7 cells.

Other RL Approaches: Uyttendaele [2009] tested a simple reactive seeker and one
that uses a Markov Chain. Adding memory to an otherwise reactive system was shown
to improve performance by [Wasson et al., 1997].
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2.3.1.2 Optimal Search Theory

Search theory started in the years 1942-1945 with the work of [Koopman, 1946] in the
Anti-Submarine Warfare Operations Research Group of the U.S. Navy. The Optimal
Search Theory was introduced by [Stone, 1975], and focuses on: 1) an efficient search
plan to find the target within a certain time; 2) thereby, estimating the time necessary
to find the object.

Stone [1977] focused on rescue on sea, as example case they used the search of a
ship in trouble, which does not know its exact location. The objective was to search as
fast and efficient as possible with the available resources. In their method, the search
space is divided in cells, of which Stone comments: “Devising a probability distribution
is an art rather than a science”. An initial probability of the cells (i.e. a belief) is given
and then propagated using a Monte-Carlo method.

Kratzke et al. [2010] explained the technology used by the US Coast Guard
for search-and-rescue operations: the Search and Rescue Optimal Planning System
(SAROPS). The planner iteratively tries to improve the localization, using a Particle
Filter (PF) and environmental information (wind, drift, temperature, etc.).

2.3.1.3 Cognitive Approaches

There are different works that use hide-and-seek to study cognition [Kennedy et al.,
2007, Trafton et al., 2006]. A method that uses a cognitive architecture, Adaptive Con-
trol of Thought-Rational (ACT-R) [Anderson et al., 2004], was presented in [Trafton
et al., 2006] to play hide-and-seek. Their architecture is layered, in which the lower
layer contains a navigation module and the top layer the cognitive architecture. The
created ACT-R module learns how to play hide-and-seek, generating some new rules.
Their research is based on hide-and-seek experiments with a 3.5 year old child. In
[Kennedy et al., 2007], they presented a method where a human and robot coopera-
tively follow an other person. Both methods focus on cognitive methods, which require
a high amount of symbolic knowledge of the world.
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2.3.1.4 Other Approaches

Bhattacharya and Hutchinson [2010] calculate strategies, for the pursuer and evader,
that are in Nash equilibrium, starting from their end positions. Both agents have
bounded speed and know the map.

Also deep learning is used to find locations with a robot, for example in [Caley et al.,
2016], they presented a method that learns the exit locations of a building, based on a
data set of hand labelled floor plans. As comparison, they used frontier exploration and
a method that uses Histogram of Oriented Gradients (HOG) features with a Support
Vector Machine (SVM) as classifier. Using a set of new floor plans, they found that the
error, distance to the real exit, was least (a few meters) for the deep learning method.

Lau et al. [2006] used a branch-and-bound approach to efficiently and quickly find
a moving non-adversarial target in a connected region environment. Their goal is to
plan a path that maximizes the probability of finding the target in minimum time.

The search of a static object in an unknown environment is discussed in [Kulich
et al., 2016]. The problem is treated as an instance of the Graph Search Problem (GSP),
where the agents can not see the neighbour vertices. Their approach uses the Greedy
Randomized Adaptive Search Procedure (GRASP), which iteratively gets a feasible
solution and then applies a local search step (for example, exchanges two vertices in
the solution path). They propose two meta-heuristics that are used in the first GRASP
step to calculate the path and three local search operators, used in the second step.

2.3.2 Track

There are many works on tracking and following, in some of them tracking only refers
to knowing where the target is, whereas following refers to going the same path as the
target and staying close to him/her. In this thesis, we use tracking to refer to both of
them.

2.3.2.1 Filters

Bayesian filters, such as the Kalman Filter (KF) and the Particle Filter (PF), have been
used to keep track of states, such as target or robot tracking [Thrun et al., 2005]. None
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of these methods explicitly search for a person, nor do they mention keeping track of
people when they have been hidden for a long time.

Kalman Filter and Extended Kalman Filter: In [Linder et al., 2016], they com-
pare different algorithms to track people with a mobile robot in a busy airport termi-
nal. They found a method that uses nearest neighbour and an Extended Kalman Filter
(EKF) to work best.

Lian et al. [2015] tracked a person in a dynamic environment by trying to maximize
the visibility of the target. Their method first uses a laser rangefinder and an EKF,
then a look-ahead algorithm to follow the target and avoid obstacles at the same time.

Luber et al. [2011] combined a multi-hypothesis tracking that uses a KF with an
on-line detector that uses Red Green Blue Depth (RGB-D) data. Their experiments
were done in a crowded indoor environment using three Microsoft Kinect sensors.

Particle Filter: Many works make use of a PF [Thrun et al., 2005] for tracking, since
it is a fast algorithm, its complexity mainly depends on the number of particles and it
allows for any distribution, unlike a KF, which normally has a Gaussian distribution.
Glas et al. [2009] used several fixed laser rangefinders to keep track of a person using a
PF. Oyama et al. [2013] presented a robot that tracks visitors’ positions in a museum
guide tour. In [Montemerlo et al., 2002], a PF was used by the robot to track a
large distribution of person locations, conditioned upon a smaller distribution of robot
poses over time. Their method compares the measured distance, using the laser range
scanner, to an object with the expected distance on the map. Also for the person’s
location, the measured distance to the person is compared to the expected distance,
using a ray tracing algorithm. Choi et al. [2011] used Kinect sensors and a variant of a
PF to keep track of several targets. Arulampalam et al. [2002] discussed different PFs
for online nonlinear/non-Gaussian Bayesian tracking.

Authors of [Brscic et al., 2013] treated tracking of people in large public environ-
ments, where they used multiple 3D range sensors mounted at above the human height,
to reduce occlusions. Each tracked person is assigned an identifier if he/she has been
visible as a new cluster of particles during several steps; if the dispersion of the cluster
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gets too high, the person gets deleted, and is recovered when the person gets detected
close to the identifier. Experiments in a shopping centre showed good results.

Khan et al. [2005] used a PF to track several agents and a Markov Random Field
(MRF) to model target interactions and maintain the identity. To handle the exponen-
tial complexity of the MRF, they used Markov Chain Monte-Carlo to do the sampling,
which acts as different PFs when the agents are far and interacts when they are close.
A reversible-jump method is used to handle changes in number of agents to track.

2.3.2.2 Other Approaches

Bandyopadhyay et al. [2009] handled tracking of a person in a crowded environment.
They compared a greedy algorithm to an algorithm that uses a POMDP to model the
target’s behaviour. They showed that the latter resulted in more efficient tracking, and
it could lose the target for some time while still continuing to track it.

In [Tipaldi and Arras, 2011], a model that represents human activity events was
introduced. A Hidden Markov Model (HMM) is used to predict people’s motion, to
track them and to adapt the robot’s navigation behaviour. Their experiments were
done in a simulated office-like environment.

A blind guiding robot, created by [Martinson, 2014], used a Kinect to detect if
the person was following. Gaussian Mixture Models (GMMs) were used for the person
location and for obstacle locations, which were trained by hand-classified objects. Their
system was able to detect the person, even when some occlusions occurred. Also [Shu
et al., 2012] were able to cope with partial occlusions while tracking multiple persons
using fixed cameras. They used SVM classifiers that detect humans.

2.3.3 Search-and-track

Volkhardt and Gross [2013] proposed a method to search and locate a person, thereby,
using an occurrence map, which indicates the most probable positions of the person
on the map. Their search method is guided by a list of predefined navigation points,
which are chosen based on the closeness and probability of occurrence of the person;
the points are marked as visited if the person is not found. Their method assumes
there to be one person, and if there are more, the robot goes to the firstly detected
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person. The verification—in case of a false positive detection—is done by waiting for
the person to interact with the robot. They did experiments with a real robot in a
scenario with three rooms where the robot was able to locate the person up to 91% of
the time.

Granata and Bidaud [2012] used fuzzy rules to decide which strategy to use to
search-and-track the person. When the person is not visible, exploration is done to
find the person. When found, an EKF is used to track the person’s location and speed.
And when the detection of the person is lost, the robot uses the EKF, which estimated
the person’s trajectory. However, this can not be done for a long time, since the EKF
might use an incorrect prediction. In the later case, or if the robot does not see the
person, it uses fuzzy rules to go to the location which has been visited the longest time
ago.

Foderaro et al. [2016] modelled the Ms. Pacman problem, which is fully visible, and
is used as a benchmark problem for pursuit-evasion with multiple active adversaries.
They used cell decomposition to generate a convex subset of cells, in which a path can
be calculated easily. The connectivity tree was converted and was used to generate the
decision tree using a profit function

2.4 Multi-agent Approaches

The task of search-and-track—or any of the related tasks discussed before, in Sec-
tion 2.2—were explained for one seeker, however, the task can also be done by several
seekers. And, in order to execute the task quickly, coordination between the agents is
important.

The coordination can be centralized, i.e., there is one agent doing the coordination;
it can be distributed, that means, each agent makes its own decisions; or it can be a
hybrid of both, for example having smaller groups of agents that coordinate centralized.
Furthermore, the coordination of multi-agent systems requires some sort of communi-
cation, which is mostly explicit, using radio signals, laser, or vision; or implicit, e.g.
through leaving marks in the environment [Chu et al., 2007].

Recently, specialized coordination techniques have been published for certain do-
mains. In the context of RoboCup, different coordination behaviours are used in com-
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bination with role assignment techniques [Iocchi et al., 2003, Weigel et al., 2002].

Multi-agent teams can be homogeneous, i.e. exists of equal agent types; or they can
be heterogeneous [Vidal et al., 2002], which can be an advantage, in search-and-rescue
for example.

Like in the previous section, we will discuss several approaches for search, track and
search-and-track separately.

2.4.1 Search

Especially in multi-agent search cooperation is important, therefore, games like pursuit-
evasion are often used to to test multi-agent cooperation, such as in [Abed-alguni et al.,
2015, LaValle et al., 1997].

2.4.1.1 Reinforcement Learning

Monte-Carlo Tree Search (MCTS) [Kocsis and Szepesvári, 2006] is used in [Nijssen and
Winands, 2012] to play a hide-and-seek variant called Scotland Yard, this is a board
game with one hider and several seekers.

Bilgin and Urtis [2015] used Q-learning—a temporal difference learning without
predefined state transition probabilities—to learn the policy of the pursuer. Their
simulations were done in a 9× 6 cells environment, and for static evaders, the pursuers
found an optimal path quickly, but they were not able to catch a random evader. When
both the evader and pursuer used Q-learning, they were able to avoid each other.

Abed-alguni et al. [2015] used aggregated Q-learning to learn the policy for several
pursuers. The agents were separated in consultants, who assigned sub-problems to the
agents, tutors and workers, resulting finally in a Q-table. The method was shown to
be faster than normal Q-learning.

Liu and Zeng [2006] presented a multi-agent cooperative RL method, which tries
to improve the long-time reward. They only focus on learning the agent’s own action,
while also observing the others’ actions. The computational cost is reduced, because
the agents do not have to learn only its own actions. Simulations of pursuit-evasion
were done with four agents.
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Awheda and Schwartz [2016] developed a formation control mechanism to find a
superior evader (higher or equal speed than the pursuer), using several pursuers. They
proposed a fuzzy RL method to learn the control strategy of the pursuer, thereby
guided by a formation control approach, which guarantees the pursuers to be distributed
around the evader. They verified their method with simulations.

2.4.1.2 Other Approaches

Hollinger et al. [2010] presented an on-line decentralized multi-agent search algorithm.
The maps were converted to a graph, with full vision assumed in each node. Their
scheduler creates a path to find a person on a graph for multiple agents, and the path
is optimized based on an adversarial and non-adversarial person model. The method
of Hollinger et al. keeps track of a list of contaminated nodes (areas that not yet have
been checked, or where the person could have returned to), thereby, assuring the person
to be found. However, to assure a person to be found, a minimum number of search
agents are necessary, which depend on the map configuration. In [Hollinger et al., 2015],
the focus is on data fusion between the agents, and keeping track of the probability of
the person being in each of the vertices. When there is communication, they take into
account the other agents’ paths, otherwise, after reconnection, the beliefs are fused.
They showed two simulated experiments, one in a map, like in the previous mentioned
paper, the second in a underwater sea environment, where communications disturbance
is a real problem.

Many works on pursuit-evasion use several multi-agents to search for an evader
and they calculate the minimum number of agents required to guarantee the target
to be found. For example, [Borie et al., 2011, Fomin and Thilikos, 2008] try to clear
a graph with a minimum number of pursuers. In [LaValle et al., 1997], the objective
is to have the target always in sight, using edge labels to indicate whether an area is
contaminated (i.e. the target could be there). They extend pursuit-evasion to grantee
detection of adversarial agents in polygonal environments. The task is to find a path
that guarantees to detect the evader, regardless the evader’s path, but more than one
pursuer might be required.

Goodrich et al. [2008] discussed the practical problem of search-and-rescue in the
wilderness, using UAVs. They proposed a vision method that detects the person using
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the camera of a UAV, and they proposed a task and role division, like is done by people
who do search-and-rescue.

Vidal et al. [2002] used UAVs and Unmanned Ground Vehicles (UGVs) to pursuit
evaders and to build a map at the same time. They tested a local-max policy, which
only takes into account neighbouring cells, whereas the global-max takes into account
the whole map. The latter was shown to have an upper bound on the expected capture
time, depending on the pursuer and environment, whereas the local method did not.

With a team of search vehicles [Wong et al., 2005] presented a method to search
multiple targets using multiple agents. Their method maintains a Bayesian filter for
each target, and the sum of the probabilities of detecting the targets is used as utility
function.

Chu et al. [2007] used pheromones to indicate where searchers have been, and since
the pheromones evaporate, lower concentrations indicate that it has been a longer time
ago a searcher was there. They showed that, initially, their method was not as efficient
as others, but then converged to a better performance.

Vieira et al. [2009] presented a method that assigns teams to pursue an evader, based
on the cost, with complete knowledge of the players. They guaranteed termination, and
optimized for minimum search time. An optimal strategy was computed off-line through
a state-based game-graph. Their experiments were done with small robots that were
only able to follow a wall, which made them slower than the simulated games, but it
showed feasibility.

In [Kolling and Carpin, 2010], they proposed a method for a pursuit-evasion variant,
Graph-Clear, without using a map. A decentralized group of pursuers swept the envi-
ronment, only guided by walls and neighbouring robots. Kolling et al. [2011] presented
a method that does searching of moving targets in a real environment of 700 000 m2,
of which a height map is known. A graph of the environment is constructed to decide
on the tasks and assign them to the agents. They used eight humans, which received
the tasks through a tablet, to search for the targets.

Individual task execution scales well, but lacks coordination of the group, therefore,
[Gerkey et al., 2005] proposed to use smaller groups. They introduced the parallel
stochastic hill-climbing with small teams (parish), in which a value heuristic (based on
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a benefit and cost) for each task and agent is used to assign tasks and generate small
teams. They tried the method in simulation and with small real robots.

Katsilieris et al. [2013] created a multi-robot system to search-and-secure a poten-
tially adversarial target. They used several mobile robots, and static robots (blockers),
to block a path, preventing the target to pass through it. They did experiments with
two large ground vehicles in an outdoor field with obstacles, clearing the field op targets.

2.4.2 Track

In this section, we focus on tracking of targets using a multi-agent system.

2.4.2.1 Filters

Xu et al. [2013] used a decentralized robot team to track a visible target, thereby
learning the utility models of the robots and negotiating with the other robots. They
used an Information Filter (IF), which is a variant of a KF, with as goal minimizing
the uncertainty and optimizing the information obtained by the robots. Experiments
were done with two Segway RPM robots, one with 360◦ and another with 180◦ vision.

Particle Filter: Glas et al. [2015] introduced a tracking algorithm using individual
PFs to track multiple entities with multiple robots.

Santos and Lima [2010] explained a cooperative object localization method, which
was applied to the RoboCup robots. They used a PF to keep track of the object, thereby
exchanging the prior probability distributions using a GMM. To handle measurement
uncertainty and disagreements, they used the Expectation Maximization (EM) algo-
rithm to approximate the posterior distribution of the ball’s position.

Ahmad and Lima [2013] tracked a spherical object (ball for the RoboCup soccer
challenge) with a team of robots. They used a PF and they shared the observation,
observation confidence and the localization confidence. The confidences were used as
weights to update the PF. Their experiments were done on a RoboCup soccer field with
four mobile robots.
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Distributed Particle Filter: To do tracking with multiple agents, the combination
of decentralized techniques and PFs has led to Distributed Particle Filters (DPFs)
[Hlinka et al., 2013]. DPFs were used by [Gu, 2007, Jiang and Ravindran, 2011, Read
et al., 2014, Sheng et al., 2005, Vázquez and Míguez, 2017], who all focused on tracking
of one or more people with a Wireless Sensor Network (WSN), which is a large number
of connected sensors. Each of these sensors can run the localization algorithm, or a few
nodes, which are called Processing Elements (PEs) [Vázquez and Míguez, 2017].

Sheng et al. [2005] used DPFs to localize and track several targets within a WSN,
and in order to reduce the information sent between nodes, they used a low dimension
GMM. They compared methods that work separately, in sensor groups, and hierar-
chically. They worked with a previously proposed Centralized Particle Filter (CPF)
tracking algorithm, in which the posterior distribution is updated based on all mea-
surements, however, Sheng et al. did it with groups of sensors. Tests were done in
simulations on an area of 100 m × 100 m with 25 fixed sensors and two targets to
track.

Gu [2007] used an average consensus filter, which makes the DPF an approxima-
tion to the CPF, in which the information is diffused globally by having information
exchange with neighbouring nodes only, and the EM is used to estimate the parameters
sent from the other nodes. They treated one moving target that was tracked using the
sensor grid, which measured the distance to the moving object.

Jiang and Ravindran [2011] designed a faster Completely Distributed PF (CDPF)
to track one randomly moving target with a sensor network using the neighbourhood.
Their method had a higher error rate than the Semi-DPF, but was much faster. In
their simulation they had thousands of randomly deployed sensors in an area of 200 m
× 200 m, of which each node could sense until around 10 m.

Read et al. [2014] guaranteed the particle weights to be constructed properly using a
Distributed Resampling with Non-proportional Allocation (DRNA). Light sensors were
used to detect a person, and they showed that having four processing units was four
times faster than having one central processing element. Real-world tracking of a person
in a 3.2 m × 6.0 m environment was done with an accuracy of about half a meter.

Vázquez and Míguez [2017] presented a DPF that uses the median posterior prob-
ability in order to efficiently combine local Bayesian estimators; in simulations they
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showed that their method was more robust.

2.4.2.2 Other Approaches

In [Fleuret et al., 2008], a multi-people tracker using multiple cameras was presented.
They used a Probabilistic Occupancy Map, in which they track several persons with
high precision, allowing them to be partly occluded.

Charrow et al. [2013] used a team of robots with a range sensor, to localize a
fixed radio source. For each robot, a measurement of the distance to the radio source
was taken, which was used as input to a PF. The robots had a reading, with noise
depending on how many obstacles were between it and the target. They used the
entropy to optimize the control strategy for all the robots, reducing the uncertainty of
the estimation of the target location. They did experiments with real robots in two
environments of up to 40 m × 35 m.

Surveillance also requires tracking, which was done by [Capitan et al., 2016], with
Unmanned Aerial Vehicles (UAVs). They did tracking of multiple targets, thereby
assuming them to move independently. They used an MOMDP, combining the target
and UAVs locations in the discrete states, and as actions, they had four movement
directions and one staying on the same position. For each behaviour (target to track),
a different POMDP policy was learned, and each behavior was selected using an auction
method. The policies were learned for a reduced state space (a single target for a single
UAV), since it is intractable for the combined state space. They did simulations and
experiments with small UAVs in a small artificial environment.

2.4.3 Search-and-track

Mottaghi and Vaughan [2007] presented a method to search-and-track with one or more
agents. They used a PF to represent the target’s probability distribution, guiding the
agents by a potential field, generated from the particles. The particles generate an
attractive field, while obstacles generate a repulsive field. When using multiple agents,
the agents are assigned a subset of all the particles. They did real-life experiments with
two Pioneer 3 robots in an office like environment.
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Chapter 3

Experimental Settings

In this chapter, the experimental settings are explained, which include the environment
where experiments were done, the used material: robots and algorithms, and the safety
guidelines and restrictions.

3.1 Environments

This thesis focuses on search-and-track in urban environments with mobile robots,
therefore, we have done experiments on several areas, see Table 3.1, of our campuses
in the North and South Campus of the Universitat Politècnica de Catalunya (UPC),
Barcelona, Spain. The campus is a large urban area in which there are static obstacles,
such as building and pillars, but also dynamic obstacles, such as people walking around.

Table 3.1: The list of the maps used during the experiments with some characteristics
of the areas, where the Access. is the surface without obstacles. Three areas of the
UPC campus were used: the FME, the BRL and the Telecos Square (three variants
were used).

Name Size [m] Size [cells] Surface [m2] Access. [m2] Figures
FME 17.0 × 12.0 17 × 12 204 164 4.10,5.8,5.9,5.12(a),5.13
BRL 80.0 × 15.0 80 × 15 1200 703 5.10
Tel. Sq. 1 60.0 × 55.2 75 × 69 3312 1400 5.11a,5.11b
Tel. Sq. 1a 35.2 × 21.2 88 × 53 746 307 5.11c
Tel. Sq. 2 60.0 × 55.2 75 × 69 3312 2188 5.12(b),5.12(c),5.14
Tel. Sq. 3 38.4 × 44.8 48 × 56 1720 1154 6.9

The smallest environment, the Facultat de Matemàtiques i Estadística (FME) lab
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(17 m × 12 m, 170 m2 accessible; Figure 3.1(a)), is located next to our research institute
IRI on the South Campus of the UPC, and was used mostly for the first trials. The
FME environment is outdoors, but partly covered by a roof, and since no obstacles
were in the field, we placed several artificial ones, as can be seen in Figure 4.10.

The Barcelona Robot Lab (BRL) is on the North Campus (80 m × 15 m, and an
area accessible to the robot of about 710 m2, Figure 3.1(b)) is a long environment with
a large amount of pillars, which cause occlusions.

The Telecos Square (60 m × 55 m of which 1400 m2 is accessible; Figure 3.1(c)) is
the largest environment, and it contains a square, and two covered areas with several
columns. Through all areas people pass by frequently, especially the last, since it is in
the centre of the campus. Note that Table 3.1 shows several versions of the Telecos
Square map, because in some experiments we used a slightly larger area, which includes
a small room.

(a) FME (b) BRL (c) Telecos Square

Figure 3.1: An air photo of the different experiment areas. Taken from: Google Maps,
c©2017.

3.1.1 Map Types

In the search-and-track simulations and real-life experiments, environment maps are
used to plan the path and predict the person’s location. In this thesis, the maps are
assumed to be two dimensional, and locations are either obstacles or free.

Maps are created using the robots sensors and a mapping algorithm, as explained in
Section 3.4, which results in the scanned map shown in Figure 3.2. Here, the obstacles
are black, free space is light grey and unknown space is dark grey. This map has a
resolution of 10 cm, and was used for navigation of the robot.
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For the search-and-track algorithms, we used a discrete grid map (Figure 3.2) made
by grouping points of the scanned map. Here black cellsobstacles are black, light grey
are free cells and the dark grey cell indicates the base (for the hide-and-seek game).
The cells are either free or obstacle, of around 1 m × 1 m. Obstacles indicate that
neither robot nor person can pass through it, nor can see through it.

Finally, a belief map was created (Figure 3.2) to indicate the probability of the
person being at a certain location. Black cells indicate the obstacles; the rest is free
area for which white to red indicates a low to high probability of the person being there,
and light blue indicates a probability of 0.

Belief mapScanned map Grid map

Figure 3.2: The different map types used in the experiments.

3.2 Architecture

The complete architecture of the search-and-track system, which is presented in this
thesis, is shown in Figure 3.3. The architecture shows the components that are used to
search and track, where our contributed components are shown in bold.

In order to search and track, we first need to know the positions of the robot and the
visible people, which is done in the Robot Perception modules. The Robot Localization
module (Section 3.4) uses the Odometry and Laser sensors to localize itself and returns
the agent’s position oL,agent. To detect all the people in the visible field, the People
Detection module uses the horizontal range lasers, which detects leg shaped objects,
see Section 3.5. Next, a tracking algorithm is used to keep track of the detections while
they are visible. The list of detected people is later on (in Chapter 5) used as dynamic
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3.2 Architecture

Figure 3.3: The architecture of the search-and-track method presented in this thesis,
our contributions are shown in bold.

obstacles in our search-and-track algorithm, and in the Person Localization block. To
recognise the person we are looking for, we put an AR marker [Amor-Martinez et al.,
2014] on the person, see Section 3.5. The Person Recognition module detects the AR
marker and outputs its position, which is then combined with the location of all the
detected people in the Person Localization module to generate the observed location
of the person OL,person. Note that this observation can be empty if the person is not
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detected. The Observation Filter module makes sure that the observed robot location
and person locations are inside the map, and that they are not inside an obstacle.

Next, the search-and-track method is executed using the observations. In the fol-
lowing chapters, Chapters 4-6, different hide-and-seek and search-and-track methods
will be presented. Finally, the Robot Navigation module (see Section 3.4) calculates
the path to the selected goal, which is sent as motion commands to the robot.

3.3 Robots

For the experiments, we used our mobile service robots Tibi and Dabo, which were
created during the URUS project [Sanfeliu et al., 2010, Trulls et al., 2011] to work
in urban pedestrian areas, and to interact with people. Tibi and Dabo have a two-
wheeled Segway RMP200 platform as base, which can work as an inverted pendulum in
constant balancing, can rotate on the spot (non-holonomic), and it has wheel encoders
providing odometry and inclinometers providing pitch and roll data. Although that, for
the experiments we incorporated two additional wheels in front and rear the platform
to maintain the platform always vertical.

To perceive the environment, they are equipped with two Hokuyo UTM-30LX 2D
laser range sensors used to detect obstacles and people, giving scans over a local hori-
zontal plane at 40 cm above the ground, facing forward and backward. The lasers have
a long detection range of 30 m, and a field of view (fov) of 270◦, which is limited to
180◦ for each of the lasers because of the carcass of the robot. Additionally, a distance
of about 45 cm between the front and rear laser causes a blind zone. As vision sensor
Dabo uses a PointGrey Ladybug 2 360◦ camera, located on the top of its head, whereas
Tibi uses a Bumblebee 2 stereo camera at the front and two Flea 2 cameras at the
back, which in total cover much less than 360◦, and therefore Tibi has less vision.

As social robots, Tibi and Dabo (Figure 3.4) are meant to interact with people
using the following elements: a touchscreen, speaker, movable arms and head, and
LED illuminated face expressions. Power is supplied by two sets of batteries, one for
the Segway platform and one for the computers and sensors, giving about five hours
of full working autonomy. Two onboard computers (Intel Core 2 Quad CPU @ 2.66
and 3.00 GHz with 4 GB RAM) manage all the running processes and sensor signals.
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Front and rear range lasers

Segway mobile platform

Auxiliary removable wheels

Movable head

Cameras

Onboard computers

Emergency stop button

Figure 3.4: The mobile robots, Dabo (left) and Tibi (right), used in the experiments.
Some of the important components of the robots are shown. Both robots normally
wear a carcass, but in this photo Tibi does not.

An external laptop (Intel Core i5-2430M @ 2.40 and 3.00 GHz with 4 GB RAM) is
used for external monitoring, and in some experiments to run the search-and-track
algorithm. For the communication between the robots, a mobile 3G connection is used.
As Operating System Ubuntu (first version 12.04, and 14.04 in Chapters 4-5) is used;
and as middle ware the Robot Operating System (ROS) [Quigley et al., 2009] is used,
a software environment for robot system integration that provides a useful and large
set of libraries and tools.

3.4 Robot Mapping and Navigation

As can be seen in Figure 3.3, our search-and-track algorithm requires the position of
the robot on the map and an algorithm that navigates the robot to a goal position.
Although the robot localization and tracking of people can be done simultaneously
[Montemerlo et al., 2002], we focus on the searching and tracking of a person, and,
therefore, we make use of existing algorithms that do localization and navigation of the
robot.
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Prior to the experiments, a map was generated by the robot using the range lasers
(back and front), with the ROS package GMapping, which implements OpenSlam’s
GMapping. This is a highly efficient Rao-Blackwellized Particle Filter (PF) that learns
grid maps from laser range data [Grisetti et al., 2007]. Although this method can be
used for localization and mapping, we did not want to use it during the experiments,
because it also can mark persons as being obstacles if they stand still for too long. In-
stead, we use the Adaptive Monte Carlo Localization (AMCL) approach, also available
as ROS package, for localization. This method uses a PF to track the pose of a robot
against a known map [Arulampalam et al., 2002].

The robot moved through the environment using a set of navigation algorithms
provided by ROS. It consists of a Dijkstra global planner that uses the previously gen-
erated map to calculate the shortest path. To avoid colliding with dynamic obstacles,
a local Trajectory Roll Out [Gerkey and Konolige, 2008] planner is used, which gener-
ates and scores trajectories over a costmap that is updated with laser range data. The
inputs of the navigation algorithm are the desired goal coordinates and orientation, see
Figure 3.3, which are given by our search-and-track algorithm.

3.5 Person Detection and Recognition

Since our algorithms use as input the location of the person, if visible, we use already
existing algorithms that give us this information using several sensors, as shown in
Figure 3.3.

First we will discuss shortly how some other works solved the recognition and de-
tection of persons, and then we will explain the method we implemented.

3.5.1 Person Recognition Methods

Many works handle tracking by detecting the persons, without recognising them:

• Luber et al. [2011] used three Kinect sensors to detect people and the Combo-
HOD (Histograms of Oriented Depths and Gradients) algorithm (which is based
on Histogram of Oriented Gradients (HOG), using depth and colour), and as
output has the 3D box of each target.
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• Glas et al. [2009, 2015] tracked several people using a PF and up to six laser
rangefinders.

• Oyama et al. [2013] tracked people, while guiding them, using a laser range scan-
ner on shoulder height, detecting the oval shape of the person.

• Montemerlo et al. [2002] used a 2D laser rangefinder and a PF to track people.

• Brscic et al. [2013] used several fixed 3D range sensors to detect the head and
shoulders of people, using the depth images, and they found it to work better
than a laser rangefinder-based detector.

Other works include the recognition of the persons, to improve the tracking system:

• Linder et al. [2016] used a 2D laser rangefinder with a random forest classifier
to detect people, and monocular vision with a RGB-D sensor using a Histogram
of Oriented Gradients (HOG) detector. The latter is sensitive to clutter and
reflections.

• Choi et al. [2011] combined five observations models: HOG, shape from the depth,
frontal face detection, skin detection and motion detection.

• Martinson [2014] used a robot with a Kinect sensor at chest level, and a GMM
was used to follow the person. They tried several classifiers that could handle
partial occlusions.

• Shu et al. [2012] used fixed cameras and then various steps (among which a HOG
detector and a Support Vector Machine (SVM) classifier) to detect and track
people, and thereby, also handling partial occlusions.

• Volkhardt and Gross [2013] used a HOG, leg, face, motion and body-shape de-
tector to recognise the person.

• Granata and Bidaud [2012] used a laser-based leg detector and two vision based
detectors for the whole body and upper body. They combined the outputs using
a grid based approach and a GMM.
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Figure 3.5: Combined laser (left) and marker detection (right: video image; centre:
binarized image).

3.5.2 Our Person Detection and Recognition Method

In the previous subsection we have shown that there are many tracking methods that
make use of a laser rangefinder, and a leg detector. We also do this, we use a boosting
leg detector [Arras et al., 2007], which provides the position of potential people in the
scene, using the horizontal front and rear range laser sensors. A Multiple Hypothesis
Tracking (MHT) for Multiple Targets [Blackman, 2004] keeps the trail of the detected
people. False positive detections are reduced by filtering out detections that are close
to, or inside known obstacles.

A people detection algorithm alone is not enough, because we also have to recognise
the person we are looking for. Although some works have used people detection, as
shown in the previous subsection, they require either a large amount of computing time
[Volkhardt and Gross, 2013] or a 3D camera (such as the Kinect [Martinson, 2014]),
which does not work well outdoors. Since this thesis focuses on search-and-track of
a person with mobile robots, we decided to use a fast and robust method. First we
tried a vision method [Villamizar et al., 2012] to detect the person with the robot’s
camera, but this only worked within a few meters distance of the robot in controlled
light conditions.

Therefore, we decided to use a robust method, Augmented Reality (AR) Markers
[Amor-Martinez et al., 2014], which were worn by the person (Figure 3.5). The AR
algorithm gives an estimation of the pose of the AR marker with respect to the camera.
We used an improved version of this Pose Estimation algorithm [Amor-Martinez et al.,
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2014] that, in combination with previous local window binarization, makes the method
more robust to outdoors lighting issues. We used for Dabo a Ladybug 360◦ camera—
which internally has five cameras—to detect a marker from any direction, and four
separate cameras for Tibi. The AR detection algorithm was run on one computer for
all cameras, and they ran on average at 4 Hz.

Since the AR marker detector sometimes gives false positive detections, we decided
to also use the list of detected people returned by the MHT algorithm, and only if the
AR Marker detection was close to the location of a detected person, it was accepted.
As side-effect, some false negatives occurred, but these had a lower effect on the search-
and-track method, because in most cases they just delayed the detection of the person,
whereas a false positive detection misguides the robot to go to an incorrect place.

3.6 Other Functions

For the search-and-track algorithms we used several other standard algorithms, which
we will comment here shortly.

3.6.1 Distance

In searching, and navigation in general, it is important to take obstacles into account
when planning a path and calculating its distance. Therefore, we have used the A* path
planner [Thrun et al., 2005] to calculate the shortest path. The complexity to calculate
a path is O(bd), where b is the branching factor and d the path depth. When the
heuristic distance estimator is good enough, then b = 1. Note that the distance values
were cached, since these values were used continuously, for example in calculating the
strategy (e.g. a POMDP policy).

3.6.2 Visibility Check

To detect the visibility, we have used a simple 2D ray tracing algorithm on a discrete
map, in which the cells are either free or an obstacle, and where no height differences
are taken into account. In later simulations, subsection 5.4.1, a visibility probability
is added that besides using a ray tracing algorithm, also calculates the probability of
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seeing a person based on the distance. Note that the ray tracing and distance calcu-
lations are assumed to be of constant complexity since we cache the results, therefore
the visibility check is also of constant complexity.

3.7 Safety Measures

A number of methods have been developed to allow robots to navigate safely around
people in specific, typically non-generalizable, tasks. Furthermore, several groups have
begun to address issues on how to plan complete paths around people, rather than
relying on solely reactive behaviours. Two different notions of human safety are treated
in [Zinn et al., 2004]: physical safety and mental safety. According to this work, the
notion of safety includes both physical aspects and psychological effects of the robot’s
motions on humans. Physical safety is necessary for the Human Robot Interaction
(HRI), and is usually assured by avoiding collisions with humans and by minimizing
the intensity of the impact in case of a collision.

The robots, Tibi and Dabo, are equipped with red-colored mushroom-headed emer-
gency stop push buttons, one onboard and one on a yellow safety remote control, which
cut the communication to the platform stopping its movement. Furthermore, the yel-
low remote control must be close enough to the robot, otherwise the robot is stopped
automatically. Finally, the robot continuously checked for obstacles to prevent colliding
with obstacles or people.

In order to reduce any potential incidents or accidents with either a person or robot,
several limitations were put during the experiments. First, the speed of the robot was
limited below 1 m/s to be sure that no damage could be done. Second, for each robot
an assistant was assigned who wore the safety remote, which allowed the robot to be
stopped, and in the case of the remote being too far, the robot automatically stopped.
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Chapter 4

Hide-and-Seek in Reduced
Discrete Environments

In this chapter, we start with the introduction of the search-and-track problem as a
hide-and-seek problem, in which the seeker is trying to catch the hider, while the hider
tries to evade from the seeker and tries reach the base. This—at first sight—simple
game, has several interesting aspects, such as requiring several cognitive skills, being a
predefined game and being easy to evaluate.

We use Reinforcement Learning to solve this problem, and in specific, the Mixed
Observable Markov Decision Process (MOMDP) model, which mixes partially and fully
observable states, and therefore, has advantages in calculating the policy. Two variants
are proposed, firstly an off-line method that uses the full resolution of the map; however,
it resulted in long policy learning times for large maps. Therefore, we created an on-
line hierarchical method that reduces the number of states at a higher level with lower
resolution, and hence, resulted in lower computing times for the policy.

The seeker’s movement was modelled as deterministic, completely depending on
the action; whereas the hider’s movement was modelled as either random or depending
on historically measured movements. However, it was found that using the historical
movements did not improve the method, since not enough data was available.

The methods were tested in simulation, using different environments and conditions,
and in real-life experiments using Dabo, and a person that played the role of hider.

The work in this chapter has brought the following contributions:
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• Real-world experiments of the hide-and-seek game using a MOMDP model [Gold-
hoorn et al., 2013a].

• Extended simulations of using an MOMDP and Hierarchical MOMDP were done
[Goldhoorn et al., 2013b].

• A hierarchical model was proposed that reduces the number of states: the Hier-
archical MOMDP [Goldhoorn et al., 2013a,b].

• Experiments were done through a game interface were humans played against a
computer.

• A model of the hider’s movement was made that uses historical data.

4.1 Introduction

Johansson and Balkenius [2005] suggested that the game of hide-and-seek is an ideal
domain for studying cognitive functions in robots, moreover, it is a basic mechanism for
HRI in mobile robotics, because hide-and-seek requires the robot to navigate, search,
interact on and predict actions of the opponent. Hide-and-seek can be seen as a simpli-
fication of search-and-track, and we, thus, can use this research as a first step towards
searching.

The hide-and-seek game is an interactive game in which the two players interact
indirectly, one trying to catch while the other is trying to flee (the seeker is a robot
and the hider is a person in our case). Players of the game can follow several strategies
to win the game, depending on their role. The robot’s strategy could be simply pre-
programmed, but a more intelligent approach would be to decide a strategy which can
be applied in multiple situations.

In this game, as in real life, there are uncertainties of the location of the other player.
For this reason, we chose the MOMDP model [Araya-Lopez et al., 2010, Ong et al.,
2010], a variant of POMDPs [Braziunas, 2003, Hauskrecht, 2000]. In our MOMDP
approach of the hide-and-seek game the robot and the person move at the same time
from one position to another (given by the (x, y) coordinates of the grid cells where they
are located). The robot updates a belief (a probabilistic state estimate) and chooses
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an action (a robot movement) to maximize the expected future reward, meanwhile, the
person chooses an action following its own strategy to win the game.

In POMDP research, the hide-and-seek game often has been used as a benchmark
to compare policy solvers. The computational complexity is a major problem when
calculating policies for POMDPs, because it depends on the number of states, and grows
exponentially with the search depth. In Section 2.3.1.1, we already have commented
several works in which the game tag was used; for about 3000 states (an area of 55
cells), the policy calculation time of an MOMDP was half an hour [Ong et al., 2010].

In this chapter, we analyze and apply an off-line MOMDP and on-line Hierarchical
MOMDP model. The off-line model worked very well for maps with a small number
of grid cells, but it becomes intractable (PSPACE-hard, Papadimitriou and Tsisiklis
[1987]) for a large number of grid cells. For this reason, we proposed an on-line MOMDP
model that computes a locally near-optimal policy at every step, which can be applied to
large maps. The on-line method is a hierarchical model of two levels, where the top level
MOMDP has a reduced number of states, which is obtained through a segmentation
process of the map. The bottom level contains a fine resolution of the map, in which
the beliefs are computed, however, the policy is calculated at the top level MOMDP.
The on-line method can also be applied to navigation problems, or problems where a
high resolution map is used. Finally, an automated heuristic greedy seeker is tested for
comparison. All seeker methods were tested in simulation and in real-life experiments,
using the real robot Dabo (Section 3.3) against a human hider in a simple urban
environment.

The chapter starts with an explanation of the used models, then the hide-and-
seek game is described in Section 4.3 and an overview of the architecture is given in
Section 4.4. The experimental settings are explained in Section 4.5 and the sections 4.6
and 4.7 explain the off-line and on-line methods respectively; and Section 4.8 explains
the greedy methods. Section 4.9 shows the simulations done, and Section 4.10 shows
the real-life experiments and we finish with a discussion in Section 4.11 and conclusions
in Section 4.12.
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4.2 Background

Reinforcement Learning (RL) can be used to learn actions, when only the goal is known,
and when a greedy search through the possible actions is not enough. In our case, for
example, we want to learn the best behaviour for the robot to find the person as quickly
as possible. Markov Decision Process (MDP) models are often used to learn the best
actions to do per state, for example a location of the person, which is guided by the
rewards. To learn these actions, i.e. the policy, a solver is used to calculate it. First,
we explain the MDP model, where the state is always known. However, in our problem
the state is not always known, such as the location of the person, therefore a Partially
Observable Markov Decision Process (POMDP) must be used. Finally, we explain a
combination of the MDP and POMDP, the Mixed Observable Markov Decision Process
(MOMDP) model, which allows for faster policy calculation.

4.2.1 Markov Decision Process

MDPs [Bellman, 1957, Sutton and Barto, 1998] are probabilistic models that are used
to obtain the best actions to do in different scenarios. An MDP can be written as the
tuple:

〈S,A, T,R, γ〉 (4.1)

where S is the set of states that represent the world; A contains the actions that can be
done by the agent; T (s, a, s′) defines the transition probabilities P (s′|s, a) that indicates
the probability of going from state s to s′ with action a; R is the reward function that
indicates a score for a state (R(s)), and possibly new state and action (R(s, a, s′)); and,
γ is the discount factor that reduces the importance of the expected rewards in the
future.

As an example, we can take the problem of an agent having to navigate to a goal.
The states represent the location of the agent as a discrete grid map, and the actions
are, for example, the movement in four directions. The transition probability directly
depends on the action, so we can say that the agent moves one grid cell in the direction
of the action. Finally, the goal state should have a high reward, and has to be marked
as final state.
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Algorithm 4.1 The Value Iteration algorithm for an MDP.
1: ∀s∈S : V (s) = 0
2: repeat
3: ∆ = 0
4: for all s ∈ S do
5: v = V (s) . old value
6: V (s) = maxa∈A [R(s, a) + γ

∑
s′∈S T (s, a, s′)V (s′)] . updated value

7: ∆ = max (∆, ‖v − V (s)‖)
8: end for
9: until ∆ < ε

The actions to take for each state are stored in the policy, and in order to generate
the best policy (indicated by π∗), the expected reward—the Value Function—has to be
calculated, which is done using the Bellman Equation [Bellman, 1957]:

V (s) = max
a∈A

R(s, a) + γ
∑
s′∈S

[
T (s, a, s′)V (s′)

] (4.2)

where γ < 1.0 is the discount factor that reduces the influence of future expected
rewards, normally γ ≥ 0.9. The Value Function is learned by either Value Iteration or
Policy Iteration [Sutton and Barto, 1998], which will be explained next.

Value Iteration: Algorithm 4.1 shows the Value Iteration algorithm, which cal-
culates the Value Function by iteratively applying Eq. 4.2. To obtain the optimal
policy V ∗, an infinite number of iterations have to be done, instead however, the
Value Function is approximated by doing iterations until V does not change anymore:
maxs∈S ‖Vt+1(s)− Vt(s)‖ < ε, where ε is a small number.

The policy can be defined, once the Value Function has been calculated:

π(s) = arg max
a∈A

R(s, a) + γ
∑
s′∈S

[
T (s, a, s′)V (s′)

] (4.3)

Policy Iteration: For Policy Iteration, see Algorithm 4.2, the Value Function V (s)
and policy (π) are initialised randomly, and then two steps are iterated over until the
policy does not change any more: Policy Evaluation and Policy Improvement.
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Algorithm 4.2 The Policy Iteration algorithm for an MDP.
1: ∀s∈S : V (s) =Random(R), π(s) =Random(A)
2: repeat
3: . Policy Evaluation
4: repeat
5: ∆ = 0
6: for all s ∈ S do
7: v = V (s) . old value
8: V (s) = R(s, π(s)) + γ

∑
s′∈S T (s, π(s), s′)V (s′) . new value

9: ∆ = max (∆, ‖v − V (s)‖)
10: end for
11: until ∆ < ε
12: . Policy Improvement
13: policy-stable = true
14: for all s ∈ S do
15: a = π(s) . old policy action
16: π(s) = arg maxa′∈A (

∑
s∈S T (s, a′, s′) [R(s) + γV (s′)]) . new action

17: if a 6= π(s) then
18: policy-stable = false
19: end if
20: end for
21: until policy-stable

First, the policy is evaluated from line 4, where in line 8 the Value Function is
updated using the action of the policy π. Next, from line 13, the policy is checked on
changes, and it is accepted if it has not been changed.

4.2.1.1 Temporal-Difference Learning

Whereas the previously discussed RL method requires a model (i.e. transition prob-
abilities), TD Learning [Sutton and Barto, 1998] methods do not. They make use of
Monte-Carlo methods and Dynamic Programming to find a policy; examples are Sarsa,
Q-learning, and Actor-Critic.

InQ-learning [Sutton and Barto, 1998] an action-value function Q(s, a) is learned
based on the current and previous rewards:

Q(st, at) = Q(st, at) + α

[
rt+1 + γmax

a∈A
Q(st+1, a)−Q(st, at)

]
(4.4)

where t is the time of the learning step, st+1 the new state reached with the executed
action at and received reward rt, α is the learning rate, and γ the discount factor.
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4.2.2 Partially Observable Markov Decision Process

In MDPs the state is always known, but in our problem the person’s position is not
always known, which is part of the state; to handle this, a Partially Observable Markov
Decision Process (POMDP) [Thrun et al., 2005, White, 1991] can be used. The partially
observable model POMDP has two main differences with the fully observable model
MDP: first, the current state is not known, but a belief (probability map) represents the
probability of being in each state; second, the belief is updated through observations.

A POMDP is a tuple:
〈S,A,O, T, Z,R, b0, γ〉 (4.5)

that contains, like an MDP (discussed before in subsection 4.2.1) a set of states (S),
actions (A), rewards (R), and a state transition function T , which defines the proba-
bility of going to s′ from s with action a: T (s, a, s′) = P (s′|s, a). Instead of knowing
the current state, observations (O) are used in POMDPs, and an observation prob-
ability function Z, which defines the probability of observing o from new state s′:
Z(o, s′, a) = P (o|s′, a). Also an initial belief b0 has to be given since the state is not
known initially.

The belief (B) is the probability of being in each possible state; Figure 4.1 shows
the belief in two situations: the person is hidden (top) and visible (bottom). To update
the belief the observation o and action a are used:

boa(s′) = Z(o, s′, a)
∑
s∈S T (s, a, s′)b(s)

Ω(o|b, a) (4.6)

where boa(s′) is the probability of being in state s′ after having done observation o and
action a; b is the previous belief. A normalisation is done by dividing by Ω(o|b, a), the
probability of observation based on the belief and action:

Ω(o|b, a) =
∑
s′∈S

(
Z(o, s′, a)

∑
s∈S

[
T (s, a, s′)b(s)

])
(4.7)

The initial belief b0, has to be given in advance; for example, a uniformly distributed
probability over all the locations where the person might be hidden (such as shown
in Figure 4.1(b)). Thereafter, the belief is updated using the observation and the
probability functions.
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(a) (b)

(c) (d)

Figure 4.1: The simulation of two sequential positions is shown. Left the maps are
shown with the blue circle being the robot (R), and the red the person (P). Black
squares are obstacles, and dark grey squares indicate locations which are not visible to
the robot. The right images show a distribution of the belief (without noise), where
red indicates a high, white a low and light blue zero probability.

The reward is given for a state and action R(s, a), and is used to calculate the best
action to do in each (belief) state using the Value Function per action and belief:

Q(b, a) = ρ(b, a) + γ
∑
o∈O

Ω(o|b, a)V (boa) (4.8)

where ρ(b, a) =
∑
s∈S [b(s)R(s, a)] is the reward for the belief b ∈ B and action a; γ

is the discount factor; and boa is the next belief state, defined in Eq. 4.6. Now, we can
define the Value Function (like Eq. 4.2):

V (b) = maxa∈AQ(b, a) (4.9)

The policy π, the best action to take in each state, is:

π(b) = arg max
a∈A

Q(b, a) (4.10)
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4.2.2.1 Policies

The Value Function for a POMDP can be defined as a linear convex function [Pineau
et al., 2003], which is represented by a list of α-vectors: Vn = {α0, α1, · · · , αn}, where
an α-vector is an |S|-dimensional hyper-plane containing the values for a certain action
a.

Figure 4.2: The value function of the POMDP is represented by a list of α-vectors,
in this example, there are three: V = {α0, α1, α2}. Horizontally, the belief b(s0) is
represented below, and b(s1) up. The vertical axis indicates the expected reward. The
red dashed line represents the maximum value for each belief.

Figure 4.2 shows an example of a value function V with three α-vectors. In this
example there are only two states: S = {s0, s1}; their belief is shown horizontally:
b(s0) below, and b(s1) up; note that b(s1) = 1.0− b(s0), since there are only two states.
Vertically, the expected reward is shown, and each of the α-vectors represents an action:
A = {a0, a1, a2}. The dashed red line indicates the best value for each belief, which
would result in the following policy:

π =


a0, if 0 ≤ b(s0) < p1

a2, if p1 ≤ b(s0) < p2

a1, if p2 ≤ b(s0) ≤ 1.0
(4.11)
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Another way of representing a policy is with a tree; Figure 4.3 shows a partial tree
of depth one (a complete policy tree would be much larger). The root of the policy
tree represents the current situation, which is a state for, the MDP, and a belief for
the POMDP. The trees in Figure 4.3 show that the POMDP’s policy tree is wider than
the MDP’s tree, because it also contains the observations.

Figure 4.3: The policy tree of an MDP and a POMDP model; note that the figures
only show a depth of one, and that in (a) the MDP, the state is known, whereas for
(b) the POMDP, the beliefs contains a probability of each state.

Executing the policy is done by finding the maximum approximated expected re-
ward:

V (b) = max
α∈Γ

(α · b) (4.12)

where Γ is the list of α-vectors and b is the belief point.

4.2.2.2 Policy Calculation

Finding POMDP policies has the problem of being complex—intractable (PSPACE-
hard) [Papadimitriou and Tsisiklis, 1987] to find the exact policy—and furthermore, it
is known to suffer from the curse of dimensionality and the curse of history [Pineau
et al., 2003, Silver and Veness, 2010], because of the infinite continuous belief space.

Exact Value Iteration The calculation of the Value Function V is also noted as
V = HV ′ [Pineau et al., 2003], where V ′ is the previous version of the Value Function,
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and H is the backup operator. Algorithm 4.3 shows the Exact Value Iteration (see for
example [Pineau et al., 2003]) for which the Value Function (Eq. 4.8) is calculated in
several steps for all the actions and observations. Firstly, in line 1 the direct reward
is calculated for all actions a, and it is stored in the set Γa,∗; secondly, in line 2 the
discounted future reward is calculated for each action a and observation o, and all
existing α-vectors in V ′. Thirdly, the values are summed based on the actions and
observations (line 3); finally, all sets of α-vectors are joined in line 4.

It can be seen, that the set Γ grows exponential if no pruning is done, the new
set V has, at worst case, |A||V ′||O| α-vectors; and the time complexity is |S|2|A||V ′||O|

[Pineau et al., 2003].

Algorithm 4.3 The steps of the Exact Value Iteration for a POMDP [Pineau et al.,
2003].
1: Γa,∗ ← αa,∗(s) = R(s, a)
2: Γa,o ← αa,o(s) = γ

∑
s′∈S [T (s, a, s′)Z(o, s′, a)α′i(s′)],∀α′i ∈ V ′

3: Γa = Γa,∗ ⊕
⊕
o∈O Γa,o

4: V =
⋃
a∈A Γa

Curse of Dimensionality: The policy of a POMDP does not define exactly which
action to do in which state, however, which action to do in a certain belief state. Since
the belief is probabilistic, this space is infinite with |S| − 1 dimensions, S being the set
of states. For each added state, a new dimension is added to the belief, this is called the
Curse of Dimensionality [Pineau et al., 2003]: it scales exponentially with the number
of states.

Curse of History: When trying to find an optimal policy, learning is started with an
initial belief, then all of the action-observation combinations have to be traced, which
grows exponentially with the planning horizon (search depth), see Figure 4.3. This
growth affects the POMDP value iteration far more than the Curse of Dimensionality
[Pineau et al., 2003].
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Algorithm 4.4 The backup function of the PBVI algorithm.
1: Γa,∗ ← αa,∗(s) = R(s, a)
2: Γa,o ← αa,o(s) = γ

∑
s′∈S [T (s, a, s′)Z(o, s′, a)α′i(s′)],∀α′i ∈ V ′

3: Γab = Γa,∗ +
∑
o∈O arg maxα∈Γa,o(αḃ)

4: V = arg maxΓa
b
,∀a∈A(Γab ḃ),∀b ∈ B

4.2.2.3 POMDP Solvers

Since finding the exact policy is hard to calculate, approximation methods are used.
They sample the belief space in a smart way, to find a policy [Kurniawati et al., 2008,
Pineau et al., 2003].

PBVI: Instead of exploring the whole belief space, it is more practical to only ex-
plore representative points of the whole space, this is done by the Point-Based Value
Iteration (PBVI) solver [Pineau et al., 2003, Spaan and Vlassis, 2004], which explores
only reachable belief points. Figure 4.3 shows that new belief points are reachable for
the POMDP by doing an action and an observation, which both are limited sets.

PBVI extends the belief space B = {b0, b1, .., bn}, by searching reachable belief
points that improve the coverage of the total belief. For each of those belief points,
an α-vector is calculated, which has the same length as the number of states, and
represents the expected reward of each state. The policy is stored as the collection of
α-vectors, and for each α-vector the best action is stored.

Algorithm 4.4 shows the PBVI backup function. PBVI expands the set of belief
points by greedily expanding the set that improves the worst-case density as fast as
possible. It is an anytime algorithm, i.e. it can return a policy even though it has not
yet converged. Here the final solution only contains |B| points, and has time complexity
|S||A||V ′||O||B| [Pineau et al., 2003].

SARSOP: An improvement of PBVI is the anytime algorithm Successive Approxi-
mations of the Reachable Space under Optimal Policies (SARSOP) [Kurniawati et al.,
2008], which limits the searched belief space to only optimally reachable belief points.
These are the points that are reached by doing an optimal sequences of actions, starting
from the initial belief b0. The algorithm keeps track of a lower and upper bound, the
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Figure 4.4: The figure shows the dependencies of the states and observations for the
MDP, POMDP, and MOMDP models.

first is represented by the set of α-vectors Γ, and the second by a sawtooth approxima-
tion [Kurniawati et al., 2008].

4.2.3 Mixed Observable Markov Decision Process

In some problems, not the whole state space is partially observable, such as the problem
of hide-and-seek, in which the hider is not always visible, but the seeker is. For these
cases, the fully and partially visible state variables can be separated. A model that
does this is the Mixed Observable Markov Decision Process (MOMDP) [Araya-Lopez
et al., 2010, Ong et al., 2010].

An MOMDP is a tuple:

〈X,Y,A,OX,OY, TX, TY, ZX, ZY, R, (x0, bY0), γ〉 (4.13)

where the states, observations, transition function, and observation function are split
for a fully visible part X, and a partially visible part Y. The influence of the states and
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observations is shown in Figure 4.4, compared to the MDP and POMDP.

Here we give a list of all the items of the MOMDP, Eq. 4.13:

• X: the fully-observable state variables;

• Y: the partially-observable state variables;

• A: the set of actions;

• OX: the list of observations for the fully visible state variables, in most cases:
OX = X, note that this is added for completeness and in [Ong et al., 2010] x is
used directly instead of ox;

• OY: the set of observations for the partially visible state variables;

• TX: TX(x, y, a, x′) = p(x′|x, y, a): the transition probabilities of the visible state
variables, given an action;

• TY: the transition probabilities of the partially observable state variables,
TY(x, y, a, x′, y′) = p(y′|x, y, a, x′);

• ZX: the observation probabilities for the visible state part, ZX(x′, y′, a, ox) =
p(ox|x′, y′, a);

• ZY: the observation probabilities for the partially visible state variables,
ZY(x′, y′, a, ox, oy) = p(oy|x′, y′, a, ox);

• R: the reward function R(x, y, a);

• (x0, bY0): the initial belief;

• γ: the discount factor.

The belief space B is not one probability map for all states, but for all partially
observable states, stored per fully observable state variable x: BY(x). And although
the total belief space B has |X| × |Y| dimensions, it is faster to calculate the Value
Function compared to Eq. 4.12:

V (x, bY) = max
α∈ΓY(x)

(α · bY) (4.14)
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The advantage is that all the operations are done on the smaller subspace ΓY(x) instead
over the whole set of α-vectors, Γ.

The new belief depends on the action a and observation o = 〈ox, oy〉, and Figure 4.5
shows all the reachable belief states, which depend on the number of observations
(|OX| · |OY|) and actions (|A|). The belief update changes with respect to the POMDP
(see Eq. 4.6):

boa,Y(y′) = 1
Ω(o|b, a)ZX(x′, y′, a, ox)ZY(x′, y′, a, ox, oy)

×
∑
y∈Y

TX(x, y, a, x′)TY(x, y, a, x′, y′)bY(y) (4.15)

The main difference with respect to Eq. 4.6 is that the transition and observation
probabilities are now separated; here also the belief is normalized by Ω(o|b, a) (similar
to Eq. 4.7, but for an MOMDP).

Policy Calculation: The policy tree of the MOMDP, see Figure 4.5, adds one layer
more (OX) to the tree with respect to the POMDP policy tree (Figure 4.3). But, only a
belief is maintained over the partially observable states Y, because the fully observable
state x ∈ X is known.

The solver for the MOMDP model, to calculate a policy, is based on SARSOP (see
subsubsection 4.2.2.3). It uses a lower bound and upper bound to sample the policy
space, which is reachable and optimal. For the upper bound a sawtooth approximation
[Hauskrecht, 2000] is used, and for the lower bound the Value Function is calculated as
shown in Algorithm 4.5.

Algorithm 4.5 Value Iteration for MOMDPs, based on SARSOP. With input
TR,Γ, (x, bY), and o = 〈ox, oy〉.

1: Γa,o ← αa,o(s) = arg maxα∈ΓY(ox)

(
αboa,Y

)
,∀a ∈ A, o ∈ OX ×OY

2: Γa,y ← αa,o(s) = R(x, y, a)+
γ
∑
o,x′,y′

[
TX(x, y, a, x′)TY(x, y, a, x′, y′)ZY(x′, y′, a, o)αa,o,x′(y′)

]
, ∀y ∈ Y, a ∈ A

3: a′ = arg maxa∈A(αabY)
4: Insert αa′ into ΓY(x)

53



4.3 Definition of the Hide-and-seek Game

Figure 4.5: The policy tree of an MOMDP model, see Figure 4.3 for the trees of an
MDP and an POMDP. Note that each node contains the belief bi = 〈ox, bY〉; and, note
that the policy is only of depth one.

4.3 Definition of the Hide-and-seek Game

Our version of the hide-and-seek game is defined as follows. There are two players, a
seeker and a hider, who play on a grid of n × m cells. The grid contains: a special
free cell, called the base; other free cells on which the players can move; and obstacle
cells that are not accessible by the players and also limit their mutual visibility. In the
initial state of the game, the seeker is placed on the base, and the hider can be placed
on any free cell (preferably not visible from the base). The agents are assumed to have
360◦ visibility at each time step, only limited by the obstacles. Hence, the visibility
for each player is calculated with a ray tracing algorithm in simulation or with a range
laser in the real world.

The game is run for a maximum of H time steps. At each time step, both the
seeker and the hider can stay in the same cell or move to a free neighbour cell in
an 8-connectivity neighbourhood (i.e. a maximum of nine actions for each player:
eight moving and one standing still). The seeker wins, if (s)he approaches the hider
sufficiently (we use a distance of one cell) and catches it. The hider wins if (s)he reaches
the base before being caught by the seeker. And the result is a tie when no player has
won within the maximum predefined time H, or if both reach the base at the same
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time.

The MOMDP, presented in Sections 4.6 and 4.7, models the game from the point of
view of the seeker, this is, we want to learn a policy for the seeker without knowing the
hider’s strategy. It is also assumed that the seeker’s state is fully observable for itself
(no local uncertainty), whereas the hider’s state is partially observable. The hider’s
position is identified if the hider is visible from the seeker’s position, and otherwise it
is unknown for the seeker.

In the simulations, two virtual agents were involved: an automated seeker—applying
the MOMDP policy or using a heuristic; and a random or a smart (heuristically driven)
hider. In our real-life experiments, a physical robot (Dabo) had the role of the seeker,
and played against a human opponent in the role of the hider.

4.4 Overview of the Approach

An overview of the presented method is shown in Figure 4.6 with the different layers
of the system. Section 3.2 already explains the Robot Perception and Robot Naviga-
tion in detail. Here, we focus on the hide-and-seek model presented in this chapter,
with two versions: the off-line MOMDP (Figure 4.6(a)) and the Hierarchical MOMDP
(Figure 4.6(b)).

The hide-and-seek models have as input the Observation Filter ’s output o =
〈oagent, operson〉. And the output of the hide-and-seek method is an action, which is
a step in one of eight directions or staying at the same location. The Action to Move-
ment module uses the action a and the agent’s position (oagent) to calculate a new pose,
which is sent to the Robot Navigation module.

The off-line MOMDP uses an MOMDP policy that is learned off-line, before doing
the experiments. During the games, the belief is maintained and used to find the best
action in the policy. The Hierarchical MOMDP has two layers: a Bottom MOMDP,
which has the same resolution as the off-line MOMDP; and a Top MOMDP, which has
less states. The Top MOMDP’s states are created by segmenting states of the Bottom
MOMDP, and the belief is compressed to the Top Belief. After having generated the
Top MOMDP, a policy is learned on-line, which is then used to find the best action for
the current Top Belief.
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(a) The off-line MOMDP. (b) The on-line Hierarchical MOMDP.

Figure 4.6: The schema of the different processes in the hide-and-seek methods pre-
sented in this chapter. The architecture of the hide-and-seek methods: (a) the off-line
MOMDP, and (b) the Hierarchical MOMDP. The blocks are algorithms or groups of
algorithms, the orange bold lined blocks were created by us.

4.5 Experimental Settings

In the experiments, we used the robot Dabo to play hide-and-seek, and a marker to
detect the hider.

4.5.1 Maps

In order to do the simulations and real-life experiments, we created discretized 2D
grid maps of the FME environment, where the players could move in one of the eight
directions. Two setups of the environment were created with different obstacle layouts:
map 1 and map 2 (Figures 4.7(a,b)). The size of the grid cells is 1 m, which implies a
grid size of 7 × 9 cells. The base and two obstacles, with a length of three cells (3 m),
have been placed on different positions.
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We used the maps which can be seen in Figure 4.7; for the first simulations, we
used the same maps but with a higher resolution: 9 × 12; for the second part of the
simulations, we used different sized maps (maps 3-5 in Figure 4.7c-e).

(a) Map 1: 7 × 9 (b) Map 2: 7 × 9

(c) Map 3: 6 × 5 (d) Map 4: 10 × 10 (e) Map 5: 12 × 12

Figure 4.7: The maps used in the simulated and real-life experiments. Black cells are
obstacles, the dark gray cell is the base.

4.5.2 Hardware and Software

The real-life experiments were done with the robot Dabo (see Section 3.3). And the
simulations were done on a stand alone PC with 8 GB of RAM and an Intel CoreTMi5
CPU 760 @ 2.80 GHz with 4 cores and Ubuntu 12.04 as OS.

To generate the policies, we used the Approximate POMDP Planning Toolkit as
solver for the POMDPs and MOMDPs, described in [Kurniawati et al., 2008, Ong
et al., 2010]. We used APPL Offline 0.95, which is available on http://bigbird.comp.
nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.Download.
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4.6 Off-line MOMDP Model for Hide-and-seek

The hide-and-seek game can be cast as an off-line MOMDP model (subsection 4.2.3),
where the state is composed by the grid cell positions of both players. This means that
the number of states is the square of the number of grid cells of the 2D map. In our
game, we assume that the robot’s position is fully observable, and the hider’s position
is not always visible (partially observable). This results in a compact lower-dimensional
representation of its belief space.

The number of grid cells depends on the resolution that we want to consider in the
game (e.g., a grid cell of 1×1 m2 in a 2D map of 10 m × 10 m implies 10 000 MOMPD
states). The hide-and-seek game is modelled as an MOMDP, thus, we have to define
the items of the tuple Eq. 4.13:

• X: the fully-observable state variable contains the seeker’s position x =
(xseeker, yseeker).

• Y: the partially-observable state variable contains the hider’s position y =
(xhider, yhider).

• A: the nine actions of the seeker: north, northwest, west, ..., halt. Each of the
actions represents a movement of one grid cell at maximum per time step, except
for the action halt, which represents staying at the same state. Note that the
hider also can move at the same time, but we assume it to be independent on the
seeker’s movement.

• OX: OX = X, since ox = x for all states of the seeker.

• OY: OY = Y ∪ {unknown}, which is the union of the set of hider positions and a
special observation value unknown, which represents the cases when the hider is
not visible to the seeker.

• TX: in our case the actions are deterministic for the seeker’s position: given the
current position x, action a, and the map it brings the seeker directly to a new
state x′, independently of the current position of the hider y. Therefore, these
probabilities will always be either 1 or 0, taking into account that the result of
an infeasible action is defined as staying on the same cell. For example, when the
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seeker has a wall in the north of it and it chooses the action north, the action will
result in not modifying the seeker’s state variable. Reaching the final state also
results in staying in the same state.

• TY: the transition probabilities of the hider’s state, given a seeker’s action and
locations of the seeker and hider. These probabilities are not as evident as the
previous ones, since the action of the hider is not known. There are two suggested
solutions: the first is to spread the probabilities of the movement of the hider
uniformly, the second option is to use historical data of human players. Both
options are discussed in the next subsection. Also here the probability will be 1
if a final state has been reached.

• ZX: the observation probabilities are 1 if ox = x′ and 0 otherwise, since X = OX.

• ZY: the observation probabilities depend on the map, and the locations of the
seeker and hider. The probability is 1 if oy = y′ and y′ is visible from x′, or if
oy =unknown and y′ is not visible from x′, otherwise the probability is 0.

• R: two reward functions have been tested (see subsection 4.6.2).

• γ: the discount factor is set to 0.95.

Final states are defined as either the seeker catching the hider (xfinal = yfinal), or
the hider reaching the base without being caught. When a final state has been reached,
the transition functions are defined to stay in the same state:

p(xfinal|xfinal, yfinal, a) = 1.0

p(yfinal|xfinal, yfinal, a, xfinal) = 1.0 (4.16)

Finally, we define the initial belief bY,0: if the hider is visible then the probability
of that state is 1.0, otherwise the belief is uniformly distributed over the not visible
states.

4.6.1 Hider Transition Function

As a first option to model the hider’s movement, we used a uniform probability of the
person choosing any of the nine actions the seeker also can choose: staying at the same
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position or moving in one of the eight directions. Another method is to base these
probabilities on real-world data, where the number of actions per state is stored and
normalized to generate the transition function TY. However, it requires a large number
of games, since each state is the combination of the hider’s and seeker’s position.

4.6.2 Reward Function

Two different reward functions R are described next; these give rise to two different
off-line MOMDP models, from which a near-optimal policy can be learnt off-line [Araya-
Lopez et al., 2010, Ong et al., 2010]. These functions are:

• Simple reward: non-zero values only for final states:

Rsimple(s, h, b) =


1, if s = h

−1, if h = b

0, otherwise
(4.17)

Where s, h, and b are respectively the positions of the seeker, the hider and the
base.

• Triangle reward: this reward makes use of the three important distances—all
measured as shortest path distance—in the game: the distance between the seeker
and the hider (dsh), the distance between the hider and the base (dhb) and between
the seeker and the base (dsb):

Rtri(s, h, b) =
{
Dmax − dsh, if dhb > dsb

−dsh, otherwise
(4.18)

where Dmax is a maximum distance constant, depending on the map size, see
Figure 4.8.

While the triangle reward is much more informative than the simple reward, its
computational cost is also slightly higher. Note that the simple reward can be com-
puted extremely fast at each step without the need of memorising its values for each
state. For the triangle reward, the distances have to be calculated, which increases the
complexity. Therefore, either the distances should be precalculated for each state—
implying a higher memory cost—or the computation time is increased considerably if
calculated at each step. We chose for the first option, since the used maps were small.
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Figure 4.8: The Triangle reward (Eq. 4.18) is calculated based on the distances (dsh)
between the seeker, hider, and base.

4.7 On-line MOMDP Model for Hide-and-seek

The issue with the off-line method is that it takes a relatively long time to generate a
policy (from 2 hours for maps of 12 × 12 up to more than 40 hours1). Furthermore,
the time and memory complexity grow with the number of states due to the curse of
history and dimensionality (see subsubsection 4.2.2.2); therefore, we present a method
that reduces the number of states.

We present a hierarchical model, based on [Foka and Trahanias, 2007], as shown
in Figure 4.9(a), in which the lower level is an MOMDP as defined in the previous
section. The big difference is that this MOMDP is not used to calculate the policy, but
instead, the top level MOMDP with less states is used. The state reduction of the top
level MOMDP is obtained by grouping a spatially adjacent group of positions in the
bottom level map. In the top MOMDP, the transition and observation probabilities,
and the initial belief are calculated, based on the probabilities and belief in the bottom
MOMDP. A policy is calculated for the top MOMDP on-line, and directly thereafter,
the policy is used to choose the best action to do. Furthermore, the bottom level is
used to keep track of the belief; the actions are common to both levels.

1Using the CPU described in subsection 4.5.2
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(a) Layered segmentation (b) Robot centred segmentation

Figure 4.9: The hierarchical method with two layers is shown in (a), where the top
layer has less states due to segmentation of the lower level map. The bold lines in the
top level indicate the top level states. The robot centred segmentation (b) centres on
the robot’s location (0 in the figure), and from there on creates segments based on the
direction and distance.

4.7.1 Bottom-level MOMDP

The bottom level is a full MOMDP (Eq. 4.13), defined in the same way as described
in Section 4.6, however, no policy is computed at this level. Only the beliefs of all the
states at this level are computed before generating the top-level MOMDP. The belief
is initialized as in the off-line version, and the bottom-level belief bY is updated using
Eq. 4.15, when an action a has been executed (whereby the seeker’s position changed
from x to x′) and an observation (ox and oy) has been obtained.

4.7.2 Top-level MOMDP

To reduce the number of states, a segmentation function ψ is used that groups adjacent
map cells. This segmentation is used to generate the new top state variables YT ,
where each value of yT will be associated with a spatially adjacent set of values of y.
Formally, the function ψ(yT ) = {y0, y1, · · · , yk} gives the set of bottom-level adjacent
states y0, y1, · · · , yk, which are covered by the top level state yT . When reducing the
number of partially observable states Y, the belief space is reduced. Also, the fully
observable state variable X could be reduced in the same way, but this did not give
significant better results nor did it reduce the time in finding the policy.

The problem of finding a proper function ψ, can be posed as a segmentation based
on the map itself, the location of the players, the reward obtained in each state, and/or
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4.7 On-line MOMDP Model for Hide-and-seek

the belief of each state.

The segmentation can be done by applying some known image segmentation algo-
rithm such as k-means [Stockman and Shapiro, 2001], where a fixed set of k clusters is
defined in the intensity value domain. In any case, the number of segmentation regions
obtained should be limited to assure a small number of states.

4.7.2.1 Robot Centred Segmentation

We propose a method that centers on the robot, and divides the space based on the eight
directions (seen from the robot) and the distance. The big advantages of this method
are that it is easy to calculate, and the number of segments are low and independent
of the map size.

Figure 4.9(b) shows the robot centred segmentation in which the robot is at loca-
tion 0, and the segmentation is done from that point in the eight directions and based
on a fixed distance to the centre. This segmentation focuses on the direction and not
the exact location; which is sufficient because a new robot centred top MOMDP model
is generated for each step. Since the hider and base positions are of vital importance for
the game, they are added as a separate superstate if known; these superstates represent
only one cell in the bottom level.

4.7.2.2 Top MOMDP

The top-level MOMDP can be defined as follows:

〈XT ,YT ,AT ,OX,T ,OY,T , TX,T , TY,T , ZX,T , ZY,T , RT , γ〉 (4.19)

where some of the top MOMDP components will be equal to those of the bottom level
MOMDP:

• XT = X;

• AT = A, the actions keep referring to the lower level actions, in the top level
however, the transition probability is adapted to abstract top level states;

• OX,T = OX;
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• OY,T = OY, these observations do not change, but their probabilities ZY,T do
change;

• ZX,T = ZX.

Therefore, the Top MOMDP reduces to the following tuple:

〈X,YT ,A,OX,OY, TX,T , TY,T , ZX, ZY,T , RT , γ〉 (4.20)

where the transition and observation probabilities, and rewards are averaged from the
bottom level:

TX,T (x, yT , a, x′) = p(x′|x, yT , a) = 1
|ψ(yT )|

∑
y∈ψ(yT )

TX(x, y, a, x′) (4.21)

TY,T (x, yT , a, x′, y′T ) = p(y′T |x, yT , a, x′)

= 1
|ψ(yT )|

∑
y′∈ψ(y′T )

∑
y∈ψ(yT )

TY(x, y, a, x′, y′) (4.22)

Note that in our implementation we have not made the seeker’s position (x) depen-
dent on the hider’s position (y), therefore, Eq. 4.21 will not change in our case, but has
been put here for completeness.

To speed up the process of finding a good policy, the final state is defined to stay
in the same state independent of the action a:

p(xf |xf , yT,f , a) = 1.0

p(yT,f |xf , yT,f , a, xf ) = 1.0 (4.23)

where (xf , yT,f ) is a final state. The final state is defined as either yT,f being on the
base, or if xf ∈ ψ(yT,f ), i.e. the seeker is in the same superstate as the hider.

The observation probability is simply averaged:

ZY,T (x′, y′T , a, ox) = p(oy|x′, y′T , a) = 1
|ψ(y′T )|

∑
y′∈ψ(y′T )

ZY(x′, y′, a, ox, oy) (4.24)

Before a policy is learned, the bottom level belief is compressed to the top level:

bY,0,T (yT ) =
∑

y∈ψ(yT )
bY(y) (4.25)

64



4.7 On-line MOMDP Model for Hide-and-seek

Segment X and O When both state variables X and Y and the observations OX

are segmented with functions ψX , ψY and ψO respectively, then the transition and
observation probabilities change slightly:

TX,T (xT , yT , a, x′T ) = p(x′T |xT , yT , a)

= 1
|ψX(xT )||ψY (yT )|

∑
x′∈ψX(x′T )

∑
x∈ψX(xT )

∑
y∈ψY (yT )

p(x′|x, y, a) (4.26)

TY,T (xT , yT , a, x′T , y′T ) = p(y′T |xT , yT , a, x′T )

=
∑
y′∈ψY (y′T )

∑
x′∈ψX(x′T )

∑
x∈ψX(xT )

∑
y∈ψY (yT ) p(y′|x, y, a, x′)

|ψX(xT )||ψY (yT )| (4.27)

ZY,T (x′T , y′T , a, oT,Y ) = p(oT,Y |x′T , y′T , a)

=
∑
x′∈ψX(x′T )

∑
y′∈ψY (y′T )

∑
oy∈ψO(oT,Y ) p(oy|x′, y′, a)

|ψX(x′T )||ψY (y′T )| (4.28)

Note that ψX and ψY could be different, but we used the same functions when we
segmented both state variables. ψO is the same as ψY , but has the unknown value
added.

To speed up the process of finding a good policy, the final state can be defined as
staying in the same super state independent of the action a: p(xT,f |xT,f , yT,f , a) = 1.0
and p(yT,f |xT,f , yT,f , a, xT,f ) = 1.0, where (xT,f , yT,f ) is a final state. The final state is
defined as either yT,f being on the base, or if ∃x ∈ X : x ∈ ψY (yT,f ) ∧ x ∈ ψX(xT,f ),
i.e. the seeker is in the same superstate as the hider.

Top Reward The top reward function RT (xT , yT , a) (with xT = sT , the seeker’s
position; and yT = hT , the hider’s position) can be defined as an average of the rewards
of the bottom states:

Ravg,T (sT , hT , a) =
∑
s∈ψX(sT )

∑
h∈ψY (hT )R(s, h, a)

|ψX(sT )||ψY (hT )| (4.29)

However, also an explicit reward was tested:

Rsimple,T (sT , hT , a) =


1, if ∃s ∈ ψX(sT ) : s ∈ ψY (hT )
−1, if b ∈ ψY (hT )
0, otherwise

(4.30)
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4.7.3 The On-line Algorithm

The algorithm for solving the on-line two-level MOMDP is based on [Foka and Tra-
hanias, 2007], and uses SARSOP to generate a policy [Kurniawati et al., 2008, Ong
et al., 2010]. SARSOP is a state-of-the-art off-line solver for POMDPs, but can be
used on-line by simply alternating a planning and an execution phase [Ross et al.,
2008]. Algorithm 4.6 and Figure 4.6(b) show how the on-line method is implemented.
First, the bottom belief is initialized based on the seeker position (x) and the belief of
the hider position (bY ), which will make the belief 1.0 on its visible position, otherwise
it will be uniformly distributed over all non-visible cells. From there on, the algorithm
is run until a final condition is reached: some player has won or the time has passed.
The segmented hider states are calculated in line 3; here we apply the robot centred
segmentation (Figure 4.9). In line 4, the belief is compressed up using Eq. 4.25, there-
after, the top level MOMDP MT is generated from the bottom level MOMDP M , and
the segmented states ST (using the formulas presented in the previous subsection). In
line 6, the policy ΠT is learned and applied to get the best action. When the action
is done, an observation of the seeker’s own position and the hider’s position is done in
line 9, which is used to update the bottom level belief in line 10.

Algorithm 4.6 On-line two-level MOMDP planner.
1: (bY , x) = initBelief(M)
2: while not finished game do
3: ST = segmentStates(M,x)
4: bY,T = compressBelief(M,ST , bY , x)
5: MT = generateTopLevel(M,ST )
6: ΠT = solveTopLevel(MT , bY,T , x)
7: a = getBestAction(MT ,ΠT , bY,T , x)
8: doAction(a)
9: (oy, x) = doObservation( )

10: (bY , x) = updateBelief(bY , x, oy)
11: end while

4.8 Smart Seeker and Hider

As a comparison method we have created a greedy heuristic seeker and hider.

66



4.8 Smart Seeker and Hider

4.8.1 Smart Seeker

Using the previously defined triangle reward (Eq. 4.18) an automated heuristic greedy
seeker has been made, called the Smart Seeker. This seeker calculates a score for each
action it can take and then chooses the action with the maximum score:

πsmart(s, h, b) = arg max
a∈A

Q(move(s, a), h, b) (4.31)

where s is the seeker position, h the hider position, b the base, Q the score function
Eq. 4.34, and move the function that moves the seeker to a new state s′ using an action
(moving in one of eight directions, or staying at the same place). One action gets the
seeker to a position, which can be used to calculate Rtri (Eq. 4.18); but, at the same
time the hider can make a move, which we take into account by averaging the score
over these possible (nine) moves:

q(s, h, b) =
∑

h′∈moves(h)
Rtri(s, h′, b)/|moves(h)| (4.32)

where moves returns the list of possible moves by the hider at location h. When the
hider is not visible to the seeker, the only thing we know is that the hider is at a not
visible position; therefore, the score q is calculated for every possible hider’s position
and then averaged:

qhidden(s, b) =
∑

h∈hidden(s)
q(s, h, b)/|hidden(s)| (4.33)

where hidden returns the list of positions not visible to the seeker in the current map,
i.e. the potential locations of the hider.

Finally, we can define the score function Q:

Q(s, h, b) =
{
qhidden(s, b), if h=hidden
q(s, h, b), otherwise

(4.34)

4.8.2 Smart Hider

Also a greedy heuristic hider has been created, the Smart Hider, which makes use of a
similar greedy policy as Eq. 4.31:

πsmart(h, s, b) = arg max
a∈A

Q(move(h, a), s, b) (4.35)
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And in Eq. 4.32, instead of the reward Rtri, the following score is used:

Rhider(s, h, b) = Dmax − dhb + υdsh + noise (4.36)

where Dmax = rows× cols, dhb is the shortest path distance between the hider and the
base, and dsh is the distance between the seeker and the hider, tuned by υ, which was
found to work well for υ = 0.4. The noise is uniform, has a maximum value of 2 m
and is reduced as soon as the distance is less than 3 m, because when a hider is either
close to the seeker or to the base, it should respectively always flee or go to the base
directly.

4.9 Simulations

In this section, the results of simulations with the different models are shown, and we
explain the results of using different variants of the problem.

Movement The cells in the map are discrete, and are either an obstacle, free or
the base. In the simulations, the agents do a step of 1 cell in one of eight directions, or
they stay in the same location, and they are only allowed to be in free space inside the
map. The simulations do not include neither acceleration, nor friction, nor collision,
for simplicity.

Hiders As opponents we use a Random Hider, which moves randomly, and the
Smart Hider as explained in subsection 4.8.2.

Maximum time To prevent the game from running endlessly, a maximum num-
ber of time steps was set, relative to the map size: 2(rows+ cols), since in bigger maps
it requires more steps to win. Reaching the maximum time without a winner is counted
as a tie.

4.9.1 POMDP vs. MOMDP

Ong et al. [2010] mentioned as one of the biggest advantages of the MOMDP model
and their used solver to be the short policy calculation time. And for the hide-and-
seek problem we also found this to be true, and already for small maps of 5 × 6 cells.
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For five different configurations of the map (i.e. different locations of obstacles), the
policy calculation for the MOMDP was at least more than 140 times faster than for
the POMDP policy.

4.9.2 Learn Transition Probabilities

Instead of using a uniform distribution of the transition probabilities for the hider,
we can also use transition probabilities based on real experiments. In [Georgaraki,
2012], the probabilities were calculated for five small maps (5 × 6 cells) using data of
hide-and-seek games played by humans against a Smart and Random hider. For each
seeker-hider location the probabilities of the nine actions (moving in one of the eight
directions or standing still) were calculated. Since not all transitions were covered,
the missing ones were given a uniform probability. The results showed no significant
difference (using Fisher’s exact test), therefore, for the simulations and experiments we
have used uniform transition probabilities for the hider’s movement.

4.9.3 Two Simple Maps

More than 5000 simulated games were done on maps 1 and 2 (Figure 4.7) with two
different resolutions (7×9 and 9×12), and with a maximum of 32 and 42 discrete time
steps respectively (resulting in a tie). The opponents were the two automated hiders:
Random Hider and Smart Hider. As models we used: the off-line MOMDP with
the simple (Eq. 4.17) and the triangle (Eq. 4.18) reward, and the on-line Hierarchical
MOMDP with the simple top reward (Eq. 4.30; the averaged reward will be tested in
subsection 4.9.4), and the Smart Seeker.

4.9.3.1 Results

Table 4.1 shows that the off-line model with the triangle reward works best (p < 0.001;
Fisher’s exact test, two-sided, this has been used to check all the win statistics). Both
the on-line method and off-line method were found to work better than the heuristic
method (p < 0.05).

Comparing the automated hiders, we see that more games were won against the
Random Hider (97%) than against the Smart Hider (95.3%; p < 0.001). No significant
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Table 4.1: The win percentages for the four seeker methods against the two automated
hiders. The last column shows the total number of simulated games done.

Map Hider Seeker Reward Win Lose Tie Total
1 random off-line simple 99.8% 0.2% 0.0% 483

off-line triangle 100.0% 0.0% 0.0% 481
on-line top 99.6% 0.0% 0.4% 245
smart – 92.8% 0.0% 7.2% 360

smart off-line simple 90.9% 9.1% 0.0% 243
off-line triangle 100.0% 0.0% 0.0% 243
on-line top 93.5% 6.3% 0.3% 400
smart – 97.3% 0.0% 2.7% 366

2 random off-line simple 99.7% 0.3% 0.0% 380
off-line triangle 99.7% 0.0% 0.3% 380
on-line top 99.0% 0.5% 0.5% 194
smart – 89.2% 0.0% 10.8% 360

smart off-line simple 91.1% 8.9% 0.0% 192
off-line triangle 99.5% 0.0% 0.5% 187
on-line top 95.5% 4.3% 0.5% 400
smart – 95.0% 0.0% 5.0% 361

Total 96.9% 0.9% 2.2% 4475

difference was found in winning for the two map configurations (Figures 4.7(a) and
4.7(b)), nor for their sizes.

Table 4.2 shows the win statistics per map size and seeker type. It also shows the
average number of actions and average duration per step for the won games. Note that
passing 32 or 42 (for the larger map) actions resulted in a tie. The off-line MOMDP
model used the least amount of steps when winning (p < 0.001; Wilcoxon ranksum).
When the off-line method used the triangle reward, it required more steps to win than
using the simple reward. It was also found that the seeker needed more steps on map 1
(Figure 4.7(a)) than on map 2 (Figure 4.7(b); p < 0.001; Wilcoxon ranksum), which
might be because map 1 is symmetric and map 2 is not. For the on-line method, the
average time per step was highest (see last column of Table 4.2), because the MOMDP
model was calculated and a policy was learned at each time step; the average step time
was lowest for the heuristic method (p < 0.001; Wilcoxon ranksum test, 2-sided).

The durations of the calculation of the off-line policies are shown in Table 4.3. Al-
though the off-line method with triangle reward worked better than the on-line method,
we can also see from Table 4.3, that the calculation of an off-line policy with triangle
reward took relatively much more time. The on-line method required to calculate a
policy at every time step, which for the 9 × 12 on average was 6.7 s, and on average it
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Table 4.2: The win percentages per map size and seeker type. The one before last
column shows the average ± standard deviation number of actions for won games, and
the last column shows the average ± standard deviation duration of one action for won
games.

Map Size Seeker Reward Win Lose Tie Total Num. Act. Dur./Act. [s]
7 × 9 off-line simple 96.6% 3.4% 0.0% 760 5.25 ± 2.49 0.19 ± 0.09

off-line triangle 99.7% 0.0% 0.3% 756 6.83 ± 4.3 0.17 ± 0.1
on-line top 97.6% 2.0% 0.5% 656 9.07 ± 6.09 2.39 ± 0.24
smart – 92.9% 0.0% 7.1% 1012 10.67 ± 7.31 0.13 ± 0.09

9 × 12 off-line simple 97.2% 2.8% 0.0% 538 7.26 ± 3.61 0.17 ± 0.09
off-line triangle 100.0% 0.0% 0.0% 535 9.22 ± 5.57 0.15 ± 0.09
on-line top 94.5% 5.1% 0.3% 583 11.71 ± 7.42 6.70 ± 0.37
smart – 95.2% 0.0% 4.8% 435 12.77 ± 8.94 0.13 ± 0.09

Table 4.3: The time it took to calculate the policies off-line for the different maps, using
the triangle or simple reward.

Map Size Map Reward Time [s]
7 × 9 1 simple 4.5

triangle 23.2
2 simple 5.2

triangle 71.5
9 × 12 1 simple 29.9

triangle 480.0
2 simple 36.8

triangle 260.0

took 12 steps to win (see Table 4.2), which resulted in approximately 78 s to complete
a game. This is quite less than the calculation of the off-line policy for the triangle
reward.

4.9.4 Larger Maps

In this section, we explain simulations done for a small map (map 3, Figure 4.7(c))
and larger sized maps (maps 3-4 in Figure 4.7). The simple (Eq. 4.17) and the triangle
(Eq. 4.18) reward were used for the off-line MOMDP, and the average of the bottom
triangle reward (Eq. 4.29) and simple top reward (Eq. 4.30; later referred to as top
rew.) for the on-line Hierarchical MOMDP. The policy of the off-line MOMDP method
was calculated beforehand with a maximum time of one hour.
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4.9.4.1 Results

An overview of the win percentages of the different seekers can be seen in Table 4.4; in
these simulations only maps until a size of 12 × 12 were used, because of the model’s
current limitations, and for the on-line MOMDP methods, a maximum learning time
of 300 s per step was allowed. When we compare the different seeker models, the
off-line MOMDP model won the most games, next the Smart Seeker and finally, the
on-line MOMDP models (p < 0.001; Fisher’s exact test, two-sided, this has been used
to check all the win percentages). The off-line MOMDP with the triangle reward and
the Smart Seeker won more often against the Smart hider, while the off-line method
with the simple reward and the on-line methods won more against the Random Hider
(p < 0.01). In all the results, the Smart Hider won most often, like expected, with a
12% win against a 1% of the Random Hider (p < 0.001).

Segmenting X For the on-line methods several parameters were tested. First, a
reduction of the number of states, by also segmenting the fully observable space (X),
this gave no significant difference in the number of wins.

Learning time Policy When we limited the on-line policy learning time to 10 s,
the win percentage were significantly less than when we limited them to 300 s.

More Segmentation Areas In the robot centred segmentation we, by default,
used only the direction—and the location of the seeker, base, and hider if known—
which gave at maximum 11 segments. We tested to add a layer more based on the
distance (see Figure 4.9), which increased the number of segments to 19 at maximum;
this gave marginally significant better results.

Map Size The map size did influence the results, the bigger the map the lower
the win percentage, as can be seen in Table 4.5. Furthermore, for bigger maps the on-
line MOMDP methods needed more time. Since the on-line MOMDP methods learn a
policy on every time step, they take more time for bigger maps. The on-line MOMDP
method with top rewards (1 or 0) took significantly longer on the 6 × 5 and 10 × 10
maps, but on the 12×12 maps the on-line method with average reward took more time
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Table 4.4: The simulation statistics for the different models against the different hiders.

Seeker Reward Hider Win Lose Tie Total
off-line simple random 1224 ( 98.6%) 3 ( 0.2%) 15 ( 1.2%) 1242

smart 1051 ( 86.6%) 162 ( 13.4%) 0 ( 0.0%) 1213
off-line triangle random 1317 ( 96.8%) 0 ( 0.0%) 43 ( 3.2%) 1360

smart 601 ( 99.0%) 5 ( 0.8%) 1 ( 0.2%) 607
on-line average random 293 ( 93.9%) 15 ( 4.8%) 4 ( 1.3%) 312

smart 109 ( 63.4%) 58 ( 33.7%) 5 ( 2.9%) 172
on-line top random 294 ( 96.7%) 3 ( 1.0%) 7 ( 2.3%) 304

smart 124 ( 56.9%) 88 ( 40.4%) 6 ( 2.8%) 218
smart seeker – random 758 ( 89.5%) 0 ( 0.0%) 89 ( 10.5%) 847

smart 455 ( 95.0%) 0 ( 0.0%) 24 ( 5.0%) 479
Total 6226 ( 92.2%) 334 ( 4.9%) 194 ( 2.9%) 6754

(p < 0.05, Wilcoxon ranksum test, 2-sided; see Table 4.5). Games on the 40× 40 maps
were only tested against the Smart Seeker, because for the other methods the number
of states was too big to be able to calculate a policy.

Time Segmenting also the X states seemed to take more time, but this was not
significant. Using the on-line MOMDP with rewards redefined at the top took less
time than the MOMDP with rewards averaged from the bottom level, but this is
marginally significant. Using the extra layer of the robot centred segmentation method
took significantly more time than only segmenting based on the direction.

The off-line MOMDP and the Smart Seeker took less time than the on-line MOMDP
models (p < 0.001,Wilcoxon ranksum). Nonetheless, we should take into account that
the off-line MOMDP method requires to learn the policy beforehand; this took from
1.4 s on average for the 6 × 5 maps to 1 hour (the set maximum) for bigger maps.
The off-line MOMDP method won the games in, statistically less, steps than any of
the other methods (p < 0.001,Wilcoxon ranksum; see Table 4.5). And using the simple
reward resulted in winning in less steps than using the triangle reward (p < 0.001).

4.10 Real-life Experiments

Since the seeker (Dabo), was designed to work in a limited controlled environment, and
because these experiments were a first step in the real world, we had to impose some
constraints to the hide-and-seek game. First of all, the robot and the person were only
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Table 4.5: The win statistics per map size and seeker type played against both hiders.
The last columns show the average ± standard deviation of the number of actions and
the duration per action for won games.

Map Size Seeker Win Lose Tie Total Num. Act. Dur. Act. [s]
6 × 5 off-line 97.0% 1.2% 1.8% 2249 5.49 ± 4.21 0.15 ± 0.13

on-line 93.3% 6.7% 0.0% 268 5.06 ± 3.49 0.69 ± 0.62
on-line (t.r.) 93.0% 6.6% 0.4% 242 5.71 ± 4.22 0.88 ± 1.36
smart seeker 91.7% 0.0% 8.3% 360 7.59 ± 4.99 0.13 ± 0.09

10 × 10 off-line 96.6% 2.1% 1.4% 1407 11.48 ± 7.11 0.11 ± 0.08
on-line 78.9% 17.6% 3.5% 142 14.67 ± 7.57 14.73 ± 17.69
on-line (t.r.) 81.4% 15.3% 3.4% 118 13.49 ± 7.84 64.63 ± 69.38
smart seeker 91.6% 0.0% 8.4% 856 13.97 ± 9.22 0.12 ± 0.1

12 × 12 off-line 85.2% 14.8% 0.0% 766 9.87 ± 6.0 0.11 ± 0.1
on-line 54.1% 40.5% 5.4% 74 14.43 ± 12.41 92.83 ± 63.01
on-line (t.r.) 59.9% 35.2% 4.9% 162 15.06 ± 11.26 70.53 ± 61.63
smart seeker 92.0% 0.0% 8.0% 100 15.68 ± 12.11 0.1 ± 0.07

40 × 40 smart seeker 55.4% 0.2% 44.4% 448 44.59 ± 24.94 0.1 ± 0.15

allowed to do one action at the same time step in one of the eight directions (or no
motion), and they could move at most one grid cell. The grid cells were marked with
tape on the floor, such that it was clear to the person. The human hider started at any
grid location. After this, the robot scanned the environment to detect any person in the
neighbourhood, and to detect its own position using the localization algorithm. These
two measurements were used as observations in the MOMDP model. Since the model
only allowed discrete movements of one cell distance, the observations were checked
before feeding them into the model. The people detector sometimes detected persons
outside the limits of the field or on the obstacles, therefore, these detections were filtered
out and changed to the closest location on the map that was not an obstacle.

The observations were entered into the model, which then calculated the action to
do. Then the person was told to do its next movement and at the same time the robot
was commanded to go to its next position. Then, another scan was done, and this was
continued until one player won or the time passed (32 steps, based on the map size).
The win condition for the robot was adapted to its size, the robot won if it was within
one cell distance of the hider.

The games were done in the FME environment (see Section 3.1) on maps 1 and 2
(Figure 4.7), and we used the off-line MOMDP method with both reward functions,
the on-line hierarchical method with top reward and the Smart Seeker.
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4.10 Real-life Experiments

4.10.1 Results

With the real robot a total of 44 games were played against 15 adults, from which 12
games were won by the hider (person), and 32 by the seeker robot, see Table 4.6 for the
detailed results. From the 32 games won by the seeker, 9 games ended in a situation
where the hider reached the base, but at the same time was caught by the seeker. No
game ended due to reaching the maximum number of time steps, 32.

The average number of actions for won and lost games is shown in the last columns
of Table 4.6, The only significant difference in the game results for map 1 and map 2 is
that the games were won in significantly less steps on map 1 (p < 0.001; Mann-Whitney
test).

Like in the simulations (subsection 4.9.3), using the off-line MOMDP with the
triangle reward resulted in significantly more won games than the on-line hierarchical
method. The low win percentages shown for the on-line method could be explained by
special strategies used by the human players.

Table 4.6: The results of the real-life experiments with the different seekers. The win
column shows the percentage of games in which the seeker won even when the hider
reached the base; tie∗ shows the games in which the hider reached the base, but the
seeker caught him/her. The last two columns show the average number of actions it
took the seeker to win or lose the game respectively.

Map Seeker Reward Win (Tie∗) Lose Total Win Act. Lose Act.
1 off-line simple 64.3% (7.1%) 35.7% 14 4.4 7.2

off-line triangle 100.0% (25.0%) 0% 8 8.3 -
on-line top 40.0% (0%) 60.0% 5 6.5 12.7
smart – 100.0% (25.0%) 0% 4 14.5 -

2 off-line simple 100.0% (50.0%) 0% 2 26 -
off-line triangle 100.0% (75.0%) 0% 4 10 -
on-line top 25.0% (0%) 75.0% 4 19 17
smart – 66.7% (33.3%) 33.3% 3 10 15

Three games are shown in Figure 4.10, which show the map and the laser collision
detections (of obstacles and walls). The light yellow area represents the game field. On
top of the map the obstacles are shown as black rectangles and the base is shown as a
dashed square. For both the seeker and hider steps are indicated with arrows and lines;
S0 is the seeker start place, which was always the base, and H0 the hider’s start place.
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4.10 Real-life Experiments

(a) Seeker at S3 and hider at H3. (b) Players are at S3 and H3. (c) Players are at S7 and H7.

Figure 4.10: Fragments of three played games against a human hider. In (a) and
(b) map 1 was used, in (c) map 2. The seeker used the simple reward in (a) and the
triangle reward was used in (b) and (c). The light yellow brown area shows the field on
which the game was played. The dashed square is the base, the black rectangles are the
obstacles, which were also detected by the robot’s laser (red, orange and green). The
yellow arrow shows the robot’s goal position and the red arrows the robot’s previous
odometry.
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4.11 Discussion

The first image (Figure 4.10(a)) shows a game played on map 1 in which the model
used the simple reward. It can be seen that the robot followed the hider around the
obstacle, and with this, the hider won. The second map (Figure 4.10(b)) shows map 1,
but this time the robot used the triangle reward. It can be seen that the robot tried
to find the hider at some hidden place, and when it could not see it (but it did have
knowledge about the hider’s position through the belief), it returned to protect the
base. This game ended in a tie, because both the hider and the seeker arrived at
the base at the same time. The last map (Figure 4.10(c)) shows a game where the
hider tried to get the seeker to follow him but when the distance to the base was too
far, the seeker returned, and finally, caught the hider before reaching the base. Two
videos in which the robot plays with the simple and triangle reward can be found on:
http://alex.goldhoorn.net/thesis/hs-momdp/.

4.11 Discussion

In this chapter we have started to tackle the hide-and-seek problem by using RL meth-
ods. First, we confirmed that the MOMDP model, with the SARSOP solver, resulted
in faster policy learning times than learning the policy for a POMDP. This is because
of the separation of fully and partially observable state variables.

Next, we found that learning all the transition probabilities is not feasible, because
we need a large amount of experimental data and there are many locations which were
not visited during the experiments done by the human subjects. Therefore, we decided
to continue using a uniform probability over all actions.

When we look at the artificial opponent in the simulation, the Smart Hider and
the Random Hider, we found that the Smart Seeker and the MOMDP models with
the triangle reward won most. While for the Random Hider, using the simple reward
resulted in a higher win rate. This can be explained because the triangle reward is
based on the same heuristic as the Smart Hider, whereas the simple reward only takes
into account the final states.

The on-line hierarchical method was proposed to reduce the number of partially
observable states, and thereby tackling the curse of dimensionality. Even though the
good results of the on-line method in simulation, this was not reflected in experiments
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done in the real world. This can be explained by the strategy used by the hiders. In
the simulations the Random Hider moved randomly and therefore was relatively easy
to catch, since it did not consider the game objectives. The Smart Hider, on the other
hand, did take into account the rules of the game, and therefore, was more predictable.
For the human players it was found that some of them did not take the optimal path,
but they used a strategy in which they “misled” the robot by leading him around an
obstacle, and thereby they won. Another disadvantage of the on-line method was its
policy calculation time, which, for the bigger maps, resulted in too slow reaction times
to work in real-life. The off-line policy calculation resulted in much faster reaction
times, but was limited by the state space.

4.12 Conclusions

This chapter has explained the first step towards a search-and-track method, specif-
ically, we have analysed four methods to play the hide-and-seek game, from which
three were based on an MOMDP model and one on a heuristic method. These were
extensively tested in simulation, and initial experiments were performed with a mobile
robot playing against a human hider in a simple real-world urban environment. The
simulated experiments showed that all methods performed well, and the best method
was the off-line MOMDP model with the triangle reward.

To reduce the state space, we proposed an on-line hierarchical method, which allows
to handle larger state spaces, since it segments the state space in larger state groups.
In simulation, the on-line method was found to give good results, but in the real-life
experiments the results were much worse than for the other methods. Furthermore,
the on-line calculation of the policy resulted in a slow robot.

Although relatively few experiments were done, they gave us important insights
in the functionality of the automated seeker methods, used by a real mobile robot in
the real world, playing (interacting and predicting) against humans. In this first step
towards working in the real world, limitations were set to have similar conditions as in
the simulations, but our next steps are to overcome these limitations by incorporating
sensing uncertainties and working in larger real-world environments.
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Chapter 5

Search-and-Track in Large
Continuous Environments

While in the previous chapter we have focused on the hide-and-seek game in a small
environment, here, we extend it to a realistic problem of search-and-track in real urban
environments with our robot Dabo. We propose several methods that can handle real-
time searching and tracking of people in an urban area, and which are shown by real-life
experiments.

The methods do an estimation of the position of the person in a continuous state
map. One method is based on the Reinforcement Learning method Partially Observ-
able Monte-Carlo Planning (POMCP), which we apply while making use of continuous
states. The second method uses a Particle Filter to estimate the person’s position.
This location estimate is then used to decide where the robot has to go to, to search
for the person.

Finally, also dynamic obstacles—that represent other people or objects moving in
the environment—are introduced, not only for simulation, but also to predict the loca-
tion of the person.

The methods presented in this chapter brought the following contributions:

• The CR-POMCP, which is a POMCP that generates a policy in continuous space,
runs in real-time, has always a minimum number of belief points, and runs in large
state spaces [Goldhoorn et al., 2014, 2017b].
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5.1 Introduction

Figure 5.1: Dabo performs the search-and-track task with a target (wearing a tag for
recognition) in different urban environments.

• Using the Highest Belief (HB) of the belief of the CR-POMCP allowed us to do
search-and-track in a real-life environment with Dabo [Goldhoorn et al., 2014,
2017b].

• The HB-CR-POMCP Searcher & Tracker improves the previous method when
the person is visible [Goldhoorn et al., 2014, 2017b].

• Furthermore, a PF method was introduced to keep track of the location of the
person, which resulted in the methods HB-PF and HB-PF Searcher & Tracker
[Goldhoorn et al., 2017b].

• Dynamic obstacles are simulated and used in the models to improve the prediction
of the person’s location [Goldhoorn et al., 2017b].

• Real-life experiments were done [Goldhoorn et al., 2014, 2017b].

5.1 Introduction

In this chapter, we start by changing the previously used RL method, MOMDP, which
can only be used for small state spaces due to the computational and memory complex-
ity. The presented methods in this chapter, however, are able to work in continuous
space, large environments (tested until an area of 2188 m2) and in real-time.

Our goal is to search and track a person in an urban environment that has static
and dynamic obstacles. We have already seen in Chapter 2 that there exist different
good techniques for searching or tracking only, but few which do both simultaneously.
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5.2 Background

We make use of a Monte-Carlo method, POMCP, that creates a policy by doing
many simulations. The CR-POMCP method works in continuous state space and with
large maps, where the belief is represented by a limited number of points. To improve
the method in the real-life experiments, it is extended to use the Highest Belief (HB)
points, which are the most probable locations of the person according to the belief. As
next method, we present another way of generating the probability map (belief) of the
person’s location by using a Particle Filter (PF).

Our presented methods are able to work in urban environments with dynamic and
static obstacles; furthermore, they take into account sensor uncertainty, false detections
of the person and lack of a person’s detection. Additional considerations are required
to make the system work properly, for example, Gaussian sensory noise is inevitable in
real-life situations, and false negative and false positive detections tend to occur. The
presented methods take the first two problems into account, and can handle situations
with short false positive detections.

Finally, the validation of the method is accomplished throughout an extensive set
of simulations and real-life experiments, see Figure 5.1. For the later, we accomplished
more than three km of autonomous navigation, with almost six hours of successful
results during several weeks of testing and experimentation.

We start this chapter by explaining some background about the used methods
(POMCP and PF), then an overview of the approach is given. In Section 5.4 some
additional information about the experimental setup is given, and then we start with
the explanation of the methods: the CR-POMCP in Section 5.5, the HB-CR-POMCP
Searcher & Tracker in Section 5.6 and the HB-PF Searcher & Tracker in Section 5.7.
Next, the simulations and real-life experiments are discussed, and finally a discussion
and the conclusions are given.

5.2 Background

In Section 4.2, POMDPs were explained in detail, in this section, models with con-
tinuous state space will be described, first Continuous POMDPs, then POMCPs, and
finally, we will explain two position estimation methods: the Kalman Filter (KF) and
the Particle Filter (PF).
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5.2 Background

5.2.1 Continuous POMDP

The problem of using continuous states for POMDPs is that the belief over a discrete
state space is already continuous. There are mainly two ways that solve this problem,
either by using the Gaussian Mixture Model (GMM), which is a finite list of Gaussians,
or by using particles and Monte-Carlo simulations.

Porta et al. [2006] presented a framework to find a policy for POMDPs with con-
tinuous states, actions and observations. They show that the Value Function for the
continuous POMDP is convex in the beliefs over continuous states. Authors define the
continuous states, observations, transition function, and reward function using a GMM,
and for the belief a GMM or particles.

Van Den Berg et al. [2012] introduced a method in which the belief is modeled
using Gaussians, the belief dynamics are approximated using an EKF (see subsubsec-
tion 5.2.3.1). The approach has a complexity of O(n4) for n dimensions, it however has
some limitations, such as requiring Gaussian distributions, and the dynamics, observa-
tions and rewards should be smooth.

Bai et al. [2014] used Monte-Carlo simulations (based on the MCVI [Bai et al.,
2011], which will be discussed in the next section) to handle continuous state and
observation spaces. They present a Generalized Policy Graph (GPG) which is a policy
graph, with each node having an action and edges representing observations. The
GPG is constructed by applying the Bellman backup equation, which is done using
Monte-Carlo sampling, to cope with continuous state and observation spaces.

5.2.2 Partially Observable Monte-Carlo Planning

In the previous chapter, we have seen that the main problem of the POMDP models
is that calculating an optimal policy is computationally too complex for large state
spaces, since the search and memory requirements grow exponentially.

Instead of calculating the exact policy, we have seen that approximations, such as
[Kurniawati et al., 2008] can be used. Another approach is used by Monte-Carlo Value
Iteration (MCVI) [Lim et al., 2011], in which the expected reward is calculated over
a random set of samples instead over all states. MCVI is used in [Bai et al., 2011]
to calculate a policy for POMDPs. They generate a policy graph to avoid having to
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5.2 Background

handle the continuous belief space; instead of going through all states to calculate the
expected reward, they randomly sample a number of states.

Silver and Veness [2010] go even a step further by using Monte-Carlo simulations
to generate a policy, without exactly calculating the expected reward (Eq. 4.8). They
present the Partially Observable Monte-Carlo Planning (POMCP), which is based on
Monte-Carlo Tree Search (MCTS) [Kocsis and Szepesvári, 2006] and POMDPs. MCTS
is a planning algorithm that estimates the expected reward by doing Monte-Carlo
simulations, whereas MCTS is made for the fully observable MDPs, POMCP handles
partial observability. Instead of defining the complete transition probability T and
observation probability Z, the POMDP simulator (s′, o, r) = G(s, a) is used; which
returns a new state s′, observation o, and reward r based on a current state s, and
action a. Moreover, the belief of the POMCP is represented by a list of nbelief states
instead of a belief probability for each possible state. To create the policy, nsim Monte-
Carlo simulations are done, the best action is chosen, the belief is updated and, finally,
the learning process continuous with the new belief.

The big advantages of POMCPs are the complexity reduction, and the easier and
more flexible definition of the POMDP model. The POMCP’s complexity does not
depend on the number of states nor observations, but it depends on the POMDP
simulator. Furthermore, the POMCP algorithm tackles the curse of history and the
curse of dimensionality by doing Monte-Carlo simulations using a POMDP simulator,
instead of the fully defined model. The first curse is solved by doing a limited amount
of Monte-Carlo simulations that each follow a single path—until an end state or limited
path depth—without trying other paths on the policy tree, and therefore, the search
space does not grow exponentially with the search depth. The second curse is solved by
the limited number of samples that represent the belief. Convergence of the POMCP
policy with finite horizon is proven in [Silver and Veness, 2010], and can be extended
to the infinite case as shown in [Kocsis and Szepesvári, 2006].

In the next subsection the algorithm is explained in more detail for the discrete
case, as shown in [Silver and Veness, 2010].
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5.2 Background

Figure 5.2: A part of a policy tree generated by the POMCP solver during the search-
and-track task for the situation in Figure 4.1-top. Belief nodes are rectangular, action
nodes are oval. For each action (here representing a movement: north, northeast,
south, etc.) a child node is reached. From the action nodes a belief node is reached
with an observation (’?’ being hidden). All nodes contain an expected value V and the
number of times N this value has been updated. B is the belief and is only maintained
in belief nodes. For clarity, in this figure only the person’s position is shown in the
observations and beliefs, and not the robot’s position.

5.2.2.1 Algorithm

The POMCP algorithm generates a policy tree, which has two types of nodes: belief
nodes, representing a belief state; and action nodes, which are the belief nodes’ children,
and are reached by doing an action. The root is a belief node and contains the belief
of the current situation. Figure 5.2 shows part of the policy tree of the situation in
Figure 4.1-top. In POMDPs, as discussed previously, the belief is the probability of
being in each of the possible states. In POMCPs the belief is represented by a list of
states, which represents the possible real state (see Figure 5.2). When a state is more
probable, then the state is repeated more times in the belief.

Whereas POMDP solvers mainly use Value Iteration (Eq. 4.8) to create a policy,
the POMCP solver does (nsim) Monte-Carlo simulations. Each node in the tree keeps
track of the average expected reward V , and the number of times N , a simulation
passes through the node.

The learning process is summarized in Figure 5.3, it starts with an initial observation
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o0 I Π G
b0

s′, o, r

a, s

Figure 5.3: Schema of the POMCP learning process.

Table 5.1: The parameters used in the POMCP algorithm.
Parameter Description
γ Discount factor.
nsim Number of Monte Carlo simulations.
nbelief Minimum number of states in the belief.
c Exploration constant.
ecount Expand count.
dmax Maximum tree depth.

o0. The simulator function I(o0) generates an initial belief b0, which is stored in the
tree root’s node. With the states from the initial belief, the current policy π is used
to choose the action. The POMDP simulator G outputs a new state, observation and
reward, which are used to update the policy, and to continue the simulation (explained
in detail later on in Section 5.5).

Before each robot’s step, the policy tree is generated and updated as shown in
Algorithm 5.7. It starts with LearnTree(Root), which does nsim simulations. An
overview of the parameters used in the algorithm is shown in Table 5.1.

Each step in the Monte-Carlo simulation starts at a randomly chosen state s from
the root’s belief (line 3). SimNode simulates a step by first choosing the action that
gives the highest reward (line 10). To prevent the model from only exploiting the current
policy, the last term in the equation in line 10 is introduced, which is weighted by the
exploration constant c. The knowledge is greedily exploited when c = 0, by choosing
always the action with the highest value; and with c > 0, different actions are tested.
These are both applied in MCTS [Kocsis and Szepesvári, 2006] and POMCP [Silver
and Veness, 2010]. The exploration constant was set to c = rhi − rlow, as suggested
by Silver and Veness, where rhi and rlo are respectively the highest and lowest reward
values returned. Action nodes, which have not been explored yet, are given a value of
∞ in line 10, to ensure that they are chosen at least once.

Next, in line 11, the belief of the second level belief node (the root being first) is

85



5.2 Background

Algorithm 5.7 The POMCP solver. Accessing child nodes is noted as Node[a] (for
action a for example).
1: function LearnTree(Node)
2: for i = 1 to nsim do
3: s ∼ Node.B
4: SimNode(Node,s,0)
5: end for
6: end function
7: function SimNode(Node,s,depth)
8: if depth > dmax then return 0
9: else

10: a = argmaxa
(
Node[a].V + c

√
log (Node.N)
Node[a].N

)
11: if depth = 1 then Node.B = Node.B ∪ {s}
12: (s′, o, rimmediate) = G(s, a)
13: if s′ is not final and not Node[a][o] exists and
14: Node[a].N ≥ ecount then
15: Add Node[a][o]
16: end if
17: if s′ is not final then
18: if Node[a][o] exists then
19: rdelayed = SimNode(Node[a][o],s′,depth+1)
20: else
21: rdelayed = Rollout(s′,depth+1)
22: end if
23: else
24: rdelayed = 0
25: end if
26: rtotal = rimmediate + γrdelayed
27: Node[a].N = Node[a].N + 1
28: Node[a].V = Node[a].V + rtotal−Node[a].V

Node[a].N
29: Node.N = Node.N + 1
30: Node.V = Node.V + rtotal−Node.V

Node.N
31: return rtotal
32: end if
33: end function
34: function Rollout(s,depth)
35: if depth > dmax then return 0
36: else
37: a ∼ πrollout()
38: (s′, o, r) = G(s, a)
39: return r + γ Rollout(s′,depth+1)
40: end if
41: end function
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5.2 Background

expanded with the passed state s. The belief nodes of a deeper level are not created,
because the amount of nodes grows exponentially with the depth, and for those nodes
the probability of being pruned out is too high.

The simulator is called with the current state and action in line 12. With action
a and observation o the new node in the tree is reached (see Figure 5.2), if it exists,
otherwise it is added (lines 13-16) if the new state s′ is not final and the parent action
node has been visited at least ecount (expand count) times; this last criterion is to
prevent the tree from growing too fast. The new node’s value V is initialized to 0, but
a heuristic value can be used.

If the new state s′ is not final, it continuous the simulation in line 19 if the new
node exists, otherwise a rollout is done. The Rollout function (line 34) is executed
when there is no node in the policy tree for the observation and action yet, it then uses
a rollout policy πrollout [Silver and Veness, 2010] until the maximum depth has been
reached. This policy can be uniformly random action selection (as suggested by [Silver
and Veness, 2010]), but it can also be based on a heuristic.

After the simulation step, the reward rtotal for the current belief and action node
are calculated (line 26), where the influence of the future reward rdelayed is weighted
with the discount factor γ to reduce the importance of possible future rewards.

For the POMDP models, the expected reward for each of the possible actions,
normally is calculated using the Bellman equation Eq. 4.8. In POMCPs, these are cal-
culated by averaging the rewards (line 26) obtained by doing Monte-Carlo simulations.
The action and observation node’s number N and value V are updated in lines 27-28,
and lines 29-30 respectively.

The simulation continues until a maximum amount of steps (dmax, line 8 and 35),
or until s′ is a final state. Finally, after the policy tree has been learned, the action
to execute can be chosen from the tree: a = argmaxaRoot[a].V . When the robot has
executed its action and has done the new observation, a new root is chosen, this is
called the update process.

Using the already learned policy tree we can get the child node through action a

(the planned one—or better, the one really done—since due to, for example obstacle
avoidance, the action can be different) and observation o. If, for example, action sw
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(south-west) has been executed, and observation hidden (’?’) has been done for the
tree in Figure 5.2, then this would reach the belief node left-under. This new node is
then taken as root, and if this child belief node does not exist, a new belief node is
created.

During the simulations the beliefs of the second level observation nodes already have
been grown (line 11 in Algorithm 5.7), therefore, the newly chosen belief will (most
probably) already have some belief points. However, to assure a minimal spread of the
belief over the possible person’s locations, a minimum number of nbelief states in the
belief are maintained. If the new root’s belief includes less than nbelief states, then new
states are generated for the belief using the POMDP simulator: (s′, osim, r) = G(s, a),
where s is sampled from the previous root’s belief. The state s′ is stored in the new
root’s belief if the real observation matches: o = osim. If there is no belief in the new
root, an initial belief can be calculated from the new observation with I, but this results
in losing the knowledge about the state (belief).

Finally, a new learning process is started again from the newly chosen root, thereby,
continuing until the final state has been reached.

5.2.3 Filters

Bayesian Filters have been used for many years to estimate the state (position) of an
agent, based on an observation with sensor noise, for example, in robotics [Thrun et al.,
2005]. A Bayesian Filter [Thrun et al., 2005] is used to estimate the state st, based on
an observation ot, action at and previous state st−1:

b̄(st) =
∫
P (st|at, st−1)b(st−1)dst−1 (5.1)

b(st) = ηP (ot|st)b̄(st) (5.2)

where η is a normalization: η = 1/
∫
P (ot|s)b̄(s)ds. As can be seen, there are two

phases, first a prediction (Eq. 5.1) is done based on the done action at at the previous
state st−1, then a correction (Eq. 5.2) is done using the previous estimate and the
observation ot.

Examples of Bayesian filters are Kalman Filters and Particle Filters, which will be
explained next.
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5.2.3.1 Kalman Filter

A Kalman Filter (KF) [Thrun et al., 2005] assumes that the state is linear stochastic:

st = Atst−1 +Btat + εt (5.3)

where At describes the state movement from one time step to another, Bt describes
the control step change, and εt is an independent and normally distributed noise with
covariance Rt. The measurement variable is defined as:

ot = Ctst + δt (5.4)

with Ct being a matrix indicating how to map the state to an observation, and δt is an
independent normally distributed noise with covariance Qt.

Algorithm 5.8 A Kalman Filter.
1: function KalmanFilter(µt−1,Σt−1, at, ot)
2: . Prediction
3: µ̄t = Atµt−1 +Btat
4: Σ̄t = AtΣt−1A

T
t +Rt

5: . Correction
6: Kt = Σ̄tC

T
t (CtΣ̄tC

T
t +Qt)−1

7: µt = µ̄t +Kt(ot − Ctµ̄t)
8: Σt = (I −KtCt)Σ̄t

9: return µt,Σt

10: end function

The KF starts with an initial mean (µ0) and covariance (Σ0), and like in the Bayes
Filter, the KF also has a prediction and correction phase, as shown in Algorithm 5.8.
First, the mean (µ) and covariance (Σ) are updated in lines 3 and 4. Then correction
is done by first calculating the Kalman gain K (line 6), which takes into account the
projection of the state to observation.

In cases where linearity cannot be guaranteed, the Extended Kalman Filter (EKF)
can be used, which does not have a linear Gaussian transition and sensor model. The
EKF models the states and observations as functions (g and h) instead of the linear
model in Eq. 5.3 and Eq. 5.4:

st = g(at, st−1) + εt (5.5)

Σt = h(st) + δt (5.6)
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The EKF does linearisation, and does not preserve normality of the distributions
of the state and measurement, therefore it is only reliable for almost linear systems.

5.2.3.2 Particle Filter

A Monte-Carlo method of doing state estimation is the Particle Filter (PF) [Thrun
et al., 2005], which uses particles that represent the state, and the state is updated in
two phases: a prediction and an update phase.

Algorithm 5.9 shows that there are different steps, first a prediction step (line 5),
then the weight is calculated based on the observation probability given the state
(line 6), and finally, resampling is done (line 11) based on the weight.

Algorithm 5.9 A basic Particle Filter.
1: function ParticleFilter(St−1, at−1, ot)
2: S̄t = St = ∅
3: . Prediction
4: for i = 1 to nparticles do
5: sample sit ∼ p(st|sit−1, at−1)
6: sit,w = p(o|sit)
7: S̄t = S̄t ∪ {sit}
8: end for
9: . Update

10: for i = 1 to nparticles do
11: sample sit ∈ S̄t with probability sit,w
12: St = St ∪ {sit}
13: end for
14: return St
15: end function

One of the advantages of a PF is that the complexity is linear with the number of
particles nparticles. Furthermore, it is a non-parametric method that puts no require-
ments on the distribution of the localizations, whereas the KF requires a Gaussian
distribution.
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(a) The CR-POMCP. (b) The Highest Belief methods (using CR-
POMCP or PF).

Figure 5.4: The schema of the different processes in the search-and-track methods
presented in this chapter. (a) shows the RL method CR-POMCP, (b) shows the HB
method, which uses either the CR-POMCP’s or PF’s belief.

5.3 Overview of the Approach

In this chapter, several methods are presented to search-and-track a person using a
robot. An overview of the architecture is shown in Figure 5.4, where (a) uses the RL
method CR-POMCP, and (b) uses the belief to find the location with the Highest
Belief. The Robot Perception and Robot Navigation have already been explained in
Section 3.2.

The first proposed method CR-POMCP (Figure 5.4(a), Section 5.5) creates a policy
on-line, and uses it to find the best action (a) to execute. This action is transformed
into a location by the Action to Movement module.

The other methods make use of a belief, the probability map of the person, see Fig-
ure 5.4(b). We use two methods to calculate the belief: the CR-POMCP (Section 5.5)
and the PF (Section 5.7). Then, the robot goal is selected, which depends on the ob-
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servation of the person; if he/she is visible, the robot does tracking using the observed
position, otherwise search is done. The search uses the belief to calculated the location
with the highest belief, which is then selected as goal (see Sections 5.6 and 5.7).

Finally, the Robot Navigation module calculates the path to the selected goal, which
is sent as motion commands to the robot.

5.4 Experimental Setup Improvements

In Chapter 3, the experimental settings have been commented, but with respect to
Chapter 4, we have improved some of the simulations, such as adding a visibility prob-
ability, and the use of dynamic obstacles.

5.4.1 Visibility Probability

Whereas previously, we modelled the visibility to be infinite, only being blocked by
obstacles; here we introduce a visibility probability function, as shown in Figure 5.5.
The probability of seeing s1 from s2 is given by:

Pvis(s1, s2) =


0, if ray(s1, s2)not free
pv,max, if d < dv,max

max(0, pv,max

−αvis(d− dv,max)), otherwise

(5.7)

where ray is the ray tracing function, which makes use of the discrete map; d =
‖s1 − s2‖; pv,max is the maximum visibility probability; dv,max is the distance until
which it has a maximum visibility probability; and αvis is the slope with which the
probability reduces. The parameters values were tuned based on real world data, and
are shown in Table 5.6.

The visibility probability is also used to simulate observations, i.e., an observation
with the real person’s location is returned with a probability of Pvis(s1, s2), otherwise
an empty observation is returned.

In the case the ray tracing algorithm detects an obstacle before the area we want
to detect, it is given a probability of 0. This is done for static obstacles, but can also
be done for dynamic obstacles when they are detected, for example for other people
walking around.
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Figure 5.5: The visibility probability of seeing a person from a specific distance in an
obstacle free area, as indicated by Eq. 5.7 (using the parameter values from Table 5.6).

5.5 Continuous Real-time POMCP

There are different ways of handling continuous state space in POMDPs, as commented
in subsection 5.2.1, but these either model the state space using a GMM or by using
particles. Since the use of a GMM is not that obvious nor easy, we have chosen the
particle method. Furthermore, the particle method, POMCP, is able to handle large
state spaces, and does not require a complete POMDP model to be defined, since only
a simulator of the POMDP is required (as explained in subsection 5.2.2). This spares
on having to define the transitions as a probability function T , and avoids handling a
belief space of infinite dimensions.

In order to use continuous states in POMCPs, three things have to be done:

1. define the continuous states;

2. create a POMDP simulator that handles these states;

3. assure that the observations are discretized.

When states represent a position on a map, then in the discrete case the position is
a grid cell, whereas in the continuous case they can have any value. Only the actions
and observations have to be discrete to prevent the policy tree from growing too wide,
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and to assure that the values in the nodes can converge. Balancing the observation
discretization is important, because a too detailed discretization of the observations
would result in a too wide policy tree, and therefore would require more simulations.
On the other hand, less detail might cause problems in the precision of planning.

In the case of using positive rewards for each state, running through more states
will be seen as being better, since it gives a higher expected reward. To prevent this,
we present the use of an averaging instead of summation for line 26 of Algorithm 5.7:

rtotal = rimmediate + γrdelayed
(1 + γ) (5.8)

5.5.1 Search-and-track POMDP Simulator

For the search-and-track problem, states (sagent, sperson) are defined as the position of
the agent (sagent) and person we want to find (sperson). There are nine actions which can
be done: eight directions and staying at the same position. The observations are the
same as the states, except when the person is not visible, then the person’s observation
(operson) is a special predicate: hidden. Our reward function, −dap, is increasing when
the agent-person distance dap is decreasing.

As mentioned previously in subsection 5.2.2, POMCPs do not require the definition
of all the probability matrices of the POMDP, but they need a POMDP simulator with
two functions: one to create an initial state (I), and another for the next step (G).

The initialisation of the belief is shown in Algorithm 5.10, which for the search-
and-track problem is calculated based on the visibility of the person (Eq. 5.7). Initial
states are generated with the function s = I(o0), where o0 is the initial observation.
The generated state is equal to the observation (with added Gaussian noise), but when
the observed person’s position is hidden, then sperson is chosen randomly from hidden
positions from oagent, thereby using the visibility probability Pvis.

The second function generates a new state based on the current state and action:
(s′, o, r) = G(s, a), see Algorithm 5.11. The new agent’s position s′agent depends on the
action and the agent’s position sagent. The person’s movement is modelled as random,
because we do not know where the person is going to, but its movement could be
modelled as heuristic or based on experience. The function Move moves the agent
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Algorithm 5.10 The initialisation algorithm for the belief, with as input observation
o0.
1: function I(o0)
2: B0 = ∅
3: for i = 1 to nbelief do
4: if o0,person = hidden then
5: do
6: sample sperson from the free cells of map
7: while Pvis(sperson, o0,agent) > Prand( )
8: else
9: sperson = N(operson, σpersonI)

10: end if
11: B0 = B0 ∪ {〈o0,agent, sperson〉}
12: end for
13: return B0
14: end function

with action a; MoveRandom moves the person in a random direction, both a distance
of at maximum 1 cell. The observation o equals the new state s′, except for operson, being
hidden when the person is not visible according to a ray tracing algorithm. The reward
function is the negative shortest path distance (i.e. taking into account obstacles)
between the robot and person dap.

To make the POMDP simulator resemble the real world, we have added Gaussian
noise to the positions in the new state s′ and observation o. Different standard devi-
ations are defined for the next seeker state (σagent), next person state (σperson), seeker
observation (σobs,agent) and person observation (σobs,person). The noise in the new state
s′ simulates the not perfect actuators of the robot, and a general difference in speed of
both agents; whereas the observation noise represents the noise of the sensors. Adding
the noise also prevents particle deprivation, which is present in most particle filters
[Thrun et al., 2005].

Besides noisy signals, false negative and false positive detections can occur, the first
are simulated by converting a person’s observation operson in hidden, with probability
pfalse_neg, and the second by returning a position for operson when it is hidden. A false
positive could have occurred because of sensory noise, or because the person was visible
through an obstacle which did not block the robot’s view completely. Therefore, the
person’s position is returned with a probability of psee_occ and otherwise, a random
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Algorithm 5.11 The POMDP simulator used to learn the POMCP policy. Prand
generates a uniformly distributed random number between 0 and 1.
1: function Gs&t(s, a)
2: s′agent = Move(sagent, a)
3: s′person = MoveRandom(sperson)
4: oagent = s′agent
5: if Visible(s′agent,s′person) then
6: if Prand( ) < pfalse_neg then
7: operson = hidden
8: else
9: operson = s′person

10: end if
11: else
12: if Prand( )< psee_occ then
13: operson = s′person
14: else if Prand( )< pfalse_pos then
15: operson = RandomPosition()
16: else
17: operson = hidden
18: end if
19: end if
20: r = −ShortestPathDist(s′agent, s′person)
21: s′agent = N(s′agent, σrobotI)
22: s′person = N(s′person, σpersonI)
23: oagent = N(oagent, σobs,agentI)
24: operson = N(operson, σobs,personI)
25: return (s′, o, r)
26: end function

position is returned with a probability of pfalse_pos.

The complexity of the simulator G is O(1), because we assume the visibility check,
distance check and probability visibility check to be of constant time (because they
are cached; see Section 3.6). The complexity of the update function of the POMCP
(Algorithm 5.7) is therefore O(nbelief).

5.6 HB-CR-POMCP Searcher & Tracker

Experiments with the CR-POMCP showed that our robot, Dabo, moved slowly, and
therefore, was not able to search and track the person in real-time. These issues were
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because of:

1. Small step actions: the RL methods return an action which is a step of about
1 m, which resulted in acceleration and deacceleration before having reached a
reasonable speed, therefore, the final movement per step was slow.

2. A limited amount of movement directions: the discrete actions allowed the robot
only to move in eight directions, see Figure 5.6(a).

3. Quickly changing actions: the actions—and thereby the directions—were often
changed from one step to another.

The first two limitations are enforced by the planning method, because increasing
the number of actions causes an exponential growth of the search tree. The third issue
was due to the noise present in the policy learning—specifically the limited number of
Monte-Carlo simulations—and a relatively small difference of an action like north and
northeast, as can be seen in Figure 5.6(a).

One way of avoiding these small steps and moving more fluidly would be to adapt
the path planner used, however, this still would not solve the other two problems.
Instead, we suggest to select goals (location where the robot has to go to) farther away,
which are selected based on the belief. The HB-CR-POMCP takes as goal the point
with the Highest Belief, and the robot’s path planning algorithm is used to reach it.
The goal is updated every tupdate s (or after a number of iterations for the simulations),
or when the person is visible. A search limit of dmax_search cells is given to prevent the
robot from choosing a too far goal.

In order to find the highest belief, a probability matrix for the map has to be calcu-
lated. Since the CR-POMCP belief is a list of continuous states, first a 2D histogram is
made of the position of the person (sperson). It contains the number of particles per cell,
which are then divided by nparticles, to get the probability of the person being there,
such as can be seen in Figure 4.1-right. From the matrix, the cell with the highest
probability is used as goal. Choosing the right dimension of the matrix is important,
because a large histogram matrix results in a high number of cells, which requires a
higher number of belief points (nbelief), and therefore, also requires more simulations
(nsim). A too small belief matrix results in a loss of precision for goals, which mainly
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is important when the person is visible. The size we chose for the belief maps depends
on the size of the map, and the precision we require. For the smaller environments,
such as at the FME, we opted for the same resolution as the grid map, but for larger
maps, such as Telecos Square, we reduced the resolution five times from 75 × 69 cells
to 15 × 14 cells.

5.6.1 Tracker when Visible

The CR-POMCP algorithm and HB-CR-POMCP work very well, but have some limi-
tations which are mainly present when the person is visible. Figure 5.6 visualizes these
limitations by comparing the planned path to the straight line from the robot to the
person. The CR-POMCP algorithm has only eight directions to which it can go to,
and therefore, when the person is visible, the actions taken by the planner are most of
the time not completely direct and cause a zigzag movement, as can be seen in Fig-
ure 5.6(a). The HB-CR-POMCP method gives imprecise goals when the resolution of
the histogram matrix is low; Figure 5.6(b) shows that the goal for the robot is set in
the centre of the belief matrix’ cell in which the person is located. The belief matrix
is shown with bold lines, and in this example, has a lower resolution than the normal
grid.

Assuming that the observation of the person’s position is detailed enough, we use
this as goal when the person is visible. At the same time, the belief of the POMCP
model (used by both CR-POMCP and HB-CR-POMCP) is updated, and when the
person is not visible the HB-CR-POMCP is used again.

Note that we also could have used a PF or KF to do tracking, but these need several
observations in order to reach to a good estimate, furthermore, we do not need an exact
location of the person since we only want to approach it.

5.7 HB-PF Searcher & Tracker

In Section 5.5, a RL method to search-and-track has been presented. Next, this method
has been adapted in Section 5.6 to use only the belief. In this section, we present an
adapted Particle Filter (PF) that can generate a belief, i.e., probability of the location
of the person we are looking for.
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(a) The CR-POMCP’s zigzag issue. (b) The HB’s low resolution issue.

Figure 5.6: The two issues with the explained methods. (a) shows the movement
(shown as a dashed line from the robot [left top circle] to the person) of the robot
using CR-POMCP, which uses (1 cell length) steps with eight different directions. (b)
HB-CR-POMCP moves directly to the highest belief, which is the centre of a belief
matrix cell (shown with thick lines). The light blue line shows the direct movement
from the robot to the person.

A KF can be used to track a person, but the method lacks two main requirements
for searching. Firstly, the person should be visible in the beginning, and secondly, when
the person is not visible anymore, we do not have an observation, and therefore, are
not able to do the innovation step to improve the certainty about the person’s location.
For longer periods, the prediction will get invalid, since the person is not always going
straight. We have chosen to use PFs, since they have been proven to work well for
tracking, are able to represent different types of distributions, are easy to adapt to our
problem and have a low computational complexity.

5.7.1 Modifications of the Basic PF for Search-and-track

To make the PF suitable for searching, we have made two important changes. First, the
initial distribution is based on the initial observation, taking into account the locations
where the person could be hidden. Second, we also use the lack of observation to update
the particles.

The initialization of the nparticles particles is done by sampling, based on the ob-
servation o = (oagent, operson), and the visibility probability like the initialization of the
CR-POMCP in Algorithm 5.10.
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In the prediction step, we assume the person has moved around 1 cell (with Gaussian
noise) in a random direction (θ):

st = st−1 + N(1.0, σperson)
[
cos θ
sin θ

]
, θ ∼ U(0, 1) (5.9)

Algorithm 5.12 Changed update step that also takes into account cases where there
is no observation, using w(s, o), see Eq. 5.10.
1: function Update(o,S,nparticles)
2: ∀s∈S : sw = w(s, o)
3: ∀s∈S : sw = sw/

∑
k∈S kw . normalize

4: S̄ = ∅
5: for i = 1 to nparticles do
6: sample s̄ from S with probability s̄w
7: S̄ = S̄ ∪ {s̄}
8: end for
9: return S̄

10: end function

For the update step (Algorithm 5.12), we also calculate the weight, even if no
observation is available of the person:

w(s, o) =


0, if ¬isValid(s)
e−‖operson−s‖2/σ2

w , if isValid(s) ∧ operson 6= ∅
wcons, if isValid(s) ∧ operson = ∅ ∧ Pvis(o, s) = 0
winc(1− Pvis(o, s)), otherwise

(5.10)

where, isValid checks if the state is a valid free position in the map, and ∅ refers to
the hidden value of the observation. If the person is visible, a probability is calculated
based on the distance between the observed location and the particle location, where
for a higher σw, higher distances are accepted; we set it to 1.0. If the person is not
visible to the agent, and neither would the particle s be visible to the agent, then it is
given a constant weight wcons (0.01). Finally, if the person is not observed, but there
is a probability of seeing the particle Pvis(o, s) (Eq. 5.7 defined in subsection 5.4.1)
then a lower weight winc << wcons is used (we set it to 0.001), since the observation is
inconsistent with the expected value.
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5.7.2 Person Location Estimation (HB Calculation)

The PF method gives us a probability map of the person’s location. Like discussed in
Section 5.6, we decided to use a grid to find the HB. In order to decide a goal for the
agent, we can use the average position of the particles. This makes sense when only
tracking is done, since the particles will be close to the target and normally distributed.
Here however, this will not be the case when the agent has to search the person, because
the real person location might not (yet) be at the centre of the particles.

The HB is calculated as in the previous method: the number of particles in a grid
cell divided by the total gives the probability of the person being in that cell. To prevent
the agent from changing too quickly from one point to another, the goal is maintained
during several time steps tupdate. In larger maps, the belief grid cells should not be too
small in order to accumulate enough particles. Also a maximum search distance was
set in order to have the robot not go too far; only in the case of not finding any HB in
this area, the search space was increased to the whole map. Like in subsection 5.6.1,
the observed location by the robot is used when the person is visible, such that the
precision is higher and we do not depend on the HB grid.

5.7.3 Extension of the method to handle Dynamic obstacles

In previous subsections, we predicted the possible locations of the person based on the
known map of the environment. For the method to work with dynamic obstacles, we
have added false negatives to the prediction phase. Here, however, we also take into
account dynamic obstacles that can occlude the person in the ray tracing function.

In the case of not taking into account dynamic obstacles, the system assumes,
after not detecting anything, that the area in its surrounding is free. When dynamic
obstacles are taken into account, particles behind them are given a higher weight wcons,
see Eq. 5.10; later on in subsection 5.8.3 some examples will be shown.

Handling false positive detections is more difficult, but they can be partly treated
by the PF method. Several iterations are needed in which the incorrect observation is
detected in order to concentrate all the particles to that location.

101



5.8 Simulations

5.8 Simulations

In this section several simulations on several maps are discussed with the different
presented methods.

Movement: Although we use grid maps for the obstacle locations, coordinates of the
agents are continuous, and for each iteration the agents do a step of 1 cell distance (also
in diagonal, thus not

√
2). The algorithms calculate a goal location for the agent, which

can either be one step—in the case of the CR-POMCP—or a goal farther away. In the
latter case, the agent is moved one step at a time in the goal’s direction following the
shortest path. The simulations include neither acceleration, nor friction, nor collision,
for simplicity. Furthermore, the agents are not allowed to be neither outside the map
nor on top of an obstacle.

Person: The tracked person is simulated by giving him/her a goal to go to, starting
at a random position with a random goal. Each iteration the goal is approached one
step, and when the goal is reached, a new random goal is chosen.

Dynamic obstacles: To generate a noisy environment, a large group (up to 100)
of “people” have been simulated, which each use the same movement strategy as the
tracked person (i.e. choosing the random goals). These moving people generate a
noisy vision, since they block the visibility of the agent—without the agent knowing
about the other people being there. For simplicity, the simulated dynamic obstacles are
not avoided in the simulations, in the real-world experiments they are avoided using
obstacle detection.

Followers: In the following simulations, two simple following methods were used in
order to compare our methods: first Simple Follower in the last simulations See All
Follower.

The Simple Follower simply goes to the position where the person was detected last
[Garrell et al., 2013]. When the person is not visible any more the robot keeps going
to the position where the person was last visible. When the person has not yet been
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detected, it simply stays at the same position. The See All Follower can always see
the person—independent of the distance or occlusion by obstacles—and therefore, is
an upper bound method.

Simulation Runs: For all the simulations, a large amount of runs were done for all
of the methods and experiment parameters (such as the map and number of dynamic
obstacles) with random positions for the agent and person, always taking into account
whether they should be visible or not. To make the comparison as fair as possible, all
the algorithms and variation of parameters to compare were run for the same simulation
(i.e. movement of the person and other persons (if present), and starting position of
the agent). After all algorithms were run, another simulation was generated which then
again was run with all algorithms. This is especially important because two random
simulations can be very different in difficulty, in some simulations the person can be
much closer to the agent than in others.

Belief Error: A measurement of the belief error εb has been introduced which indi-
cates the error of the person’s location in the belief with respect to the real location p.
The value εb is a weighted distance between the person’s location in the belief and in
reality:

εb =
∑
h∈H

bh‖h− p‖ (5.11)

where H is the list of HB points, and bh is the belief of cell h. An average of this value
has been used to compare the beliefs; since we do not have ground truth in the real
experiments, this value can only be calculated in simulation.

Below, we will discuss the different simulations done with the different algorithms.
The last subsection details the latest simulations comparing the HB-PF Searcher &
Tracker and HB-CR-POMCP Searcher & Tracker presented in [Goldhoorn et al., 2017b].

5.8.1 POMCP Hide-and-seek

First, we tested the HB-CR-POMCP Searcher & Tracker in the hide-and-seek game
against the two automated hiders: the Smart Hider and the Random Hider. The Smart
Hider minimized the distance to the base, but at the same time kept a minimum distance
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to the seeker, as explained in Section 4.9. The Smart Hider used the same reward
function Eq. 4.36, but withDmax = max(rows, cols), v = 0.5, and Rhider(s, h, b) = 0.2dhb
if dsh = 0. The last case was added to reduce the probability of the Smart Hider
choosing to go to the base (or be close to it) when the seeker was actually there.

Both algorithms were tested in discrete state space without noise and in continuous
state space with noise. The games were played in turns, where in each turn both
players had to do an action before the next turn started. The game ended in a tie if
the maximum number of actions was reached, which was set to rows × cols. The used
maps were BRL (50× 10 cells) and FME (20× 12 cells), see Section 3.1, with the base
on the centre of the map.

Both the simple reward (Eq. 4.17) and the triangle reward (Eq. 4.18) were tried. In
the first case, the reward aggregation was done with an average (Algorithm 5.7, line 26),
and in the second case with Eq. 5.8. Furthermore, two different rollout policies were
used: uniformly random action selection and the heuristic Smart Seeker (Section 4.8).

5.8.1.1 Results

No significant difference in the use of the random rollout policy and the Smart Seeker
rollout policy has been found, therefore only the Smart Seeker policy has been used.

The Random Hider was the easiest opponent and in most games the seeker won
against it, except for the POMCP with triangle reward (< 50% won games) and the
Smart Seeker (< 70% won games); therefore, we concentrate on the Smart Hider.

The results of the games played against the Smart Hider are shown in Table 5.2,
and demonstrate us that the POMCP planner with the simple reward worked better
than using the triangle reward (p < 0.01; Fisher’s exact test, two-sided, this has been
used to check all the win statistics). The results in continuous space were better
than in discrete space, which was probably because the Smart Hider was not tuned for
continuous space. In the discrete cases, almost all games that used the triangle rule and
the Smart Seeker ended in a tie, which shows that the games reached an equilibrium.
The POMCP method worked significantly better (p < 0.01) than the Smart Seeker,
except for case of continuous space in the smaller map (FME) where no significant
difference was found.
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Table 5.2: The results of simulations against the Smart Hider on the BRL (a) and FME
(b). All lines are statistics of about 90 runs. Num. Act. are the average ± standard
deviation number of actions for the won games. Avg. Time is the average step time for
actions in won games (or tie if there are none).

(a) BRL (50 × 10 cells)
Seeker Cont. Reward Win Tie Lose Num. Act. Avg. Time [s]
POMCP simple 31.8% 68.2% 0% 102.6 0.54
POMCP triangle 0% 100% 0% – 0.59
Smart Seeker – 0% 100% 0% – 0.04
POMCP X simple 70.9% 29.1% 0% 67.9 0.94
POMCP X triangle 50.6% 47.1% 2.4% 22.8 0.81
Smart Seeker X 49.4% 50.6% 0% 17.9 0.04

(b) FME (20 × 12 cells)
Seeker Cont. Reward Win Tie Lose Num. Act. Avg. Time [s]
POMCP simple 31% 66.7% 2.3% 105.6 0.35
POMCP triangle 2.3% 97.7% 0% 84.5 0.23
Smart Seeker – 0% 100% 0% – 0.04
POMCP X simple 100% 0% 0% 8.2 0.53
POMCP X triangle 71% 28% 1.1% 47.3 0.23
Smart Seeker X 96.4% 0% 3.6% 11.0 0.04

The step times of the Smart Seeker were about 0.04 s, and for the POMCP methods
0.9 s at maximum, but the times of the POMCP solver depend especially on the number
of simulations (nsim).

5.8.2 CR-POMCP Variants

In this section we test the CR-POMCP algorithm and its variants discussed in Sec-
tions 5.5 and 5.6:

• CR-POMCP: the RL method for which we learn a policy on-line, and then this
is used to find the best action to do for the current belief.

• HB-CR-POMCP: chooses the HB location for the robot to go to, and uses the
shortest path to reach it.

• CR-POMCP Searcher & Tracker: uses the action of the CR-POMCP when the
person is not visible, otherwise it goes directly to the person.
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• HB-CR-POMCP Searcher & Tracker: uses the HB-CR-POMCP when the person
is not visible, otherwise goes directly to the person.

• Simple Follower: goes to the last location where the person was seen.

Comparison of the algorithms was done by looking at the average distance to the
person, the time it took the robot to get close to him/her and the belief error (Eq. 5.11).

In these simulations the dynamic obstacles were not taken into account while plan-
ning, and no visibility probability was used, but an infinite visibility was assumed. A
noisy crowded environment was simulated by adding a group of 10 or 50 people to the
scene, to reduce the robot’s visibility. Finally, we will show the results of simulations
to which Guassian noise was added to the observations.

A total of about 4000 experiments were done, repeating each of the conditions at
least 38 times. For each experiment 200 iterations were done, except for the smaller
map FME, for which 100 steps were done.

5.8.2.1 Algorithm Parameter Values

The values of the parameters used are shown in Table 5.3. The value of the discount
factor γ was set to 0.95, like in [Silver and Veness, 2010]. The exploration constant
was set to c = rhi− rlow as suggested in [Silver and Veness, 2010], where rhi and rlo are
respectively the highest and lowest reward values returned. Our reward is r = −dap
and therefore the highest value would be 0, and the lowest value would be the negative
longest path: −(rows × cols). The expand count (ecount) was set to 2, to prevent the
tree from being expanded at the first simulation, but on the other hand, trying to store
information of as many simulations as possible. The maximum depth (dmax) was set
to an estimation of when the robot should find the person. Although it also depends
on the number of obstacles, using the size of the map is a good indicator.

In simulation, the smaller values of nsim and nbelief were used for the small map only.
These values were obtained experimentally: a higher nsim and nbelief should improve the
policy and belief, but at the same time require more calculation time. Especially when
we want a real-time system, the timing is important. The other parameters tune the
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noise of the states and observations returned by the simulator G (see subsection 5.5.1),
these were tuned first in simulation, and later while doing tests with the real robot.

The HB-CR-POMCP method updated its belief every 3 s in the real experiments
and every 3 iterations in the simulations. We did not limit the distance for the search
of the highest belief (dmax). The 2D histogram for the belief made by HB-CR-POMCP
had the same scale for the FME map (17 × 12 cells), but for the BRL map it was
reduced to 1 : 2 (from 80 × 15 cells to 40 × 8 cells) and for the Telecos Square it was
scaled 1 : 5, because it is a large map (75 × 69 cells to 15 × 14 cells).

Table 5.3: The parameters values used. There is a column for the parameter values in
simulation, and in the real experiments.

Parameter Real Sim. Description
CR-POMCP Parameters

γ 0.95 0.95 discount factor
nsim 1000 2500 number of simulations
nbelief 500 1000 number of belief points
c rows × cols exploitation constant
ecount 2 2 expand count
dmax 2(rows + cols) maximum search depth

Noise Parameters
σagent 0.2 m 0.2 m standard dev. of Gaussian noise for robot movement
σperson 0.3 m 0.3 m std. dev. of Gaussian noise for person movement
σobs,agent 0.1 m 0.1 m std. dev. of Gaussian noise for robot observation
σobs,person 0.1 m 0.1 m std. dev. of Gaussian noise for person observation
pfalse_neg 0.3 0.3 false negative detection probability
pfalse_pos 0 0.001 false positive detection probability
psee_occ 0.01 0.01 probability of seeing through an obstacle

Highest Belief
tupdate 3 s 3 steps wait time to re-calculate goal

5.8.2.2 Results

Table 5.4 shows the results of the simulations done in all maps, vertically it shows
the three different maps, and the amount of people (dynamic obstacles) randomly
walking in the area. On each line the average of at least 38 simulations is shown for the
specific method. The first results column shows the average (± standard error) distance
between the robot and the person it should search and track; the second column gives
the average (and standard error) belief error Eq. 5.11, except for the Simple Follower,
since it does not use a belief; the last columns show the percentage of the time in which
the robot was closer than 1 cell or 5 cells to the person.
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Table 5.4: The results of the simulation of the different CR-POMCP methods. On the
left side the map, number of people occluding, and the method are indicated. The result
columns: 1) Avg. Distance: indicates an average (± standard error) of the distance
between the robot and the person; 2) εb: the Belief Error error (Eq. 5.11); 3) CR 1
and 5: Close Range, percentage of time that the robot was respectively at a distance
of 1 or 5 grid cells, or closer.

Method Avg. Distance [m] εb [m] CR1 [%] CR5 [%]
Simple Follower 1.66 (±0.35) – 85.08 95.19
CR-POMCP 1.55 (±0.39) 0.51 (±0.13) 15.60 95.21

0
Pe

op
le

HB-CR-POMCP 1.52 (±0.32) 0.47 (±0.17) 76.16 95.48
CR-POMCP S.&T. 1.49 (±0.32) 0.48 (±0.19) 85.08 95.19
HB-CR-POMCP S.&T. 1.47 (±0.25) 0.48 (±0.24) 85.53 95.50
Simple Follower 3.11 (±0.47) – 38.88 82.73
CR-POMCP 3.26 (±0.36) 1.61 (±0.86) 11.20 84.55

10
Pe

op
le

HB-CR-POMCP 2.64 (±0.39) 1.43 (±0.79) 36.84 87.78
CR-POMCP S.&T. 2.79 (±0.39) 1.55 (±0.92) 41.82 85.05
HB-CR-POMCP S.&T. 2.54 (±0.36) 1.33 (±0.81) 46.82 88.04

F
M

E

Simple Follower 5.94 (±0.55) – 7.03 48.59
CR-POMCP 5.31 (±0.42) 5.39 (±0.51) 4.85 55.52

50
Pe

op
le

HB-CR-POMCP 5.34 (±0.45) 5.42 (±0.62) 5.61 54.09
CR-POMCP S.&T. 5.14 (±0.44) 5.01 (±0.67) 7.93 57.58
HB-CR-POMCP S.&T. 5.45 (±0.46) 5.46 (±0.58) 7.39 52.77
Simple Follower 6.01 (±1.65) – 69.04 80.79
CR-POMCP 5.74 (±1.31) 1.81 (±0.65) 4.30 81.62

0
Pe

op
le

HB-CR-POMCP 4.62 (±1.25) 1.24 (±0.58) 16.46 87.49
CR-POMCP S.&T. 4.08 (±1.45) 1.34 (±0.61) 77.80 87.23
HB-CR-POMCP S.&T. 3.78 (±1.32) 1.20 (±0.56) 78.99 88.54
Simple Follower 7.25 (±1.68) – 46.28 75.85
CR-POMCP 6.81 (±1.58) 3.05 (±2.44) 4.45 76.65

10
Pe

op
le

HB-CR-POMCP 6.50 (±1.67) 3.10 (±2.51) 14.80 77.38
CR-POMCP S.&T. 5.83 (±1.60) 2.97 (±2.04) 54.45 78.53
HB-CR-POMCP S.&T. 5.51 (±1.54) 2.51 (±2.11) 56.01 80.46

B
R

L

Simple Follower 14.57 (±2.29) – 12.17 39.69
CR-POMCP 12.40 (±1.94) 9.94 (±2.09) 2.48 43.32

50
Pe

op
le

HB-CR-POMCP 12.57 (±2.09) 10.39 (±2.14) 5.89 47.29
CR-POMCP S.&T. 11.89 (±2.02) 9.94 (±1.99) 16.16 47.92
HB-CR-POMCP S.&T. 12.47 (±2.04) 10.21 (±2.01) 13.71 45.00
Simple Follower 14.44 (±3.14) – 50.69 61.35
CR-POMCP 7.79 (±2.08) 4.62 (±2.01) 3.86 77.07

0
Pe

op
le

HB-CR-POMCP 10.14 (±1.98) 5.17 (±1.95) 2.56 50.40
CR-POMCP S.&T. 6.59 (±2.02) 4.71 (±2.04) 67.72 79.56
HB-CR-POMCP S.&T. 5.61 (±1.95) 3.73 (±1.87) 71.07 81.01
Simple Follower 18.05 (±3.24) – 29.80 49.71
CR-POMCP 10.30 (±2.84) 6.99 (±2.27) 3.80 68.04

10
Pe

op
le

HB-CR-POMCP 12.59 (±2.38) 8.18 (±2.31) 2.12 45.65
CR-POMCP S.&T. 8.59 (±2.41) 6.19 (±2.18) 45.57 72.81
HB-CR-POMCP S.&T. 8.79 (±2.34) 6.35 (±2.24) 48.80 67.22

T
el

ec
os

Sq
ua

re

Simple Follower 23.76 (±2.91) – 10.87 26.39
CR-POMCP 15.99 (±2.79) 13.99 (±3.12) 2.69 43.81

50
Pe

op
le

HB-CR-POMCP 19.14 (±2.78) 16.86 (±3.19) 1.38 28.36
CR-POMCP S.&T. 15.01 (±2.74) 13.41 (±2.98) 16.47 46.29
HB-CR-POMCP S.&T. 16.59 (±2.84) 14.42 (±3.01) 18.08 36.82
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Statistical comparisons between the average robot-person distance of the methods
were done with the Wilcoxon ranksum test (2-sided), because not all the data had a
normal distribution according to the χ2-test. When looking at the results we should
take into account the size of the maps, in a small map—such as FME—it is easier and
faster to find the person, but it easily gets crowded and therefore, we should focus more
on the results on the other two maps.

The method which was significantly closest to the person, without any other peo-
ple walking around and in all maps, was the HB-CR-POMCP Searcher & Tracker
(p < 0.001); the second best was the CR-POMCP Searcher & Tracker (p < 0.001).
When there were 10 people walking around the results slightly change, but the HB-
CR-POMCP Searcher & Tracker still was significantly best in the FME and BRL
Lab (p < 0.001). In the Telecos map there was no significant difference with the
CR-POMCP Searcher & Tracker. Finally, for 50 people the CR-POMCP Searcher &
Tracker was best (p < 0.001), except for the FME map where there was no significant
difference with the HB-CR-POMCP Searcher & Tracker. In all cases the Simple Fol-
lower was worst (p < 0.001), except for the FME map when there were 10 or more
people, then there was no significant difference with the CR-POMCP.

The high distances for large maps with many people walking around indicate that,
on average, the robot was relatively far from the person. However, the close range
percentage of at minimum 25% indicates that the robot was close to the person (5 cells
or less) during at least 25% of the time. The remaining time, the robot was farther
away, because it had to find the person first in the crowded environment.

Although no statistical tests have been done for the belief error and Close Range,
their results are mostly consistent with the Average Distance. The lowest average
distance to the person showed the lowest agent belief error and the highest percentage
in the close range (5 cells). The only exception is the FME map with 0 people, but
here the results do almost not differ.

A last measurement is the relative time in which the person was visible to the robot.
Also here we see that the HB-CR-POMCP Searcher & Tracker scored best, i.e. had the
highest percentage, and the Simple Follower was worst. The visibility percentages in
the BRL map were respectively 95% and 86%, and for the Telecos map 89% and 67%.
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Table 5.5: The results of the simulation of the different methods considering sensor
noise (σ = 1m). On the left side the map, and the method are indicated. The result
columns indicate: 1) Avg. Distance: an average (± standard error) of the distance
between the robot and the person; 2) εb: Belief Error (Eq. 5.11); 3) CR 1 and 5: Close
Range, percentage of time that the robot was respectively at a distance of 1 or 5 grid
cells, or closer.

Method Avg. Distance [m] εb [m] CR1 [%] CR5 [%]

F
M

E

Simple Follower 3.41 (±0.72) – 11.46 89.94
CR-POMCP 3.08 (±0.30) 1.61 (±0.47) 10.36 91.60
HB-CR-POMCP 2.91 (±0.51) 1.59 (±0.31) 11.27 92.53
CR-POMCP S.&T. 2.87 (±0.57) 1.57 (±0.49) 11.90 92.71
HB-CR-POMCP S.&T. 2.85 (±0.48) 1.56 (±0.34) 12.37 93.25

B
R

L

Simple Follower 13.76 (±3.88) – 2.60 36.95
CR-POMCP 6.77 (±3.72) 2.52 (±2.52) 2.94 67.96
HB-CR-POMCP 7.33 (±2.28) 2.35 (±1.23) 3.62 55.35
CR-POMCP S.&T. 8.10 (±2.46) 2.57 (±1.44) 3.42 45.03
HB-CR-POMCP S.&T. 8.25 (±2.37) 2.53 (±1.34) 3.64 45.50

T
el

.
Sq

. Simple Follower 21.37 (±2.21) – 1.64 28.61
CR-POMCP 9.81 (±2.11) 6.22 (±2.06) 2.42 56.44
HB-CR-POMCP 12.47 (±2.26) 7.77 (±2.19) 1.75 31.67
CR-POMCP S.&T. 10.56 (±2.04) 6.37 (±1.98) 2.02 48.18
HB-CR-POMCP S.&T. 11.50 (±2.18) 7.16 (±2.11) 2.41 38.86

The better working Tracker versions can be explained by the use of the Simple
Follower as soon as the person was visible, because the movement was much more
efficient, as discussed in subsection 5.6.1. When the number of people increases, there
was a higher probability of the tracked person to be occluded by them. These dynamic
obstacles, the other people, were not known by the POMDP simulator, used in the
POMCP, and therefore the model could incorrectly assume that the person was not
visible. This resulted in an incorrect belief, and caused the HB-CR-POMCP Searcher
& Tracker to be worse, because it used the belief directly for its search strategy.

5.8.2.3 Observation Noise

Additionally, we analysed the effect of sensor noise in the proposed method. In Ta-
ble 5.5, the results of simulations with a Gaussian sensor noise of σ = 1 m in all maps
are shown, and here no dynamic obstacles were present (i.e. 0 people). As a comparison
the no noise case (σ = 0 m) can be found in Table 5.4, in the rows with 0 people.

In the first map (FME), the significantly best method—i.e. having the lowest aver-
age distance to the person—was the HB-CR-POMCP Searcher & Tracker (p < 0.001),
and the second best was the CR-POMCP Searcher & Tracker (p < 0.001). In contrast,
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in the BRL Lab the significantly best method was the CR-POMCP (p < 0.001), fol-
lowed by the HB-CR-POMCP (p < 0.001). Finally, in the Telecos Square environment,
the significantly best method was the CR-POMCP (p < 0.001), and the second best
was the CR-POMCP Searcher & Tracker (p < 0.001). The better working CR-POMCP
in large maps can be because the steps taken by this method are from the policy which
is learned by doing a large number of simulations. The Simple Follower, however, also
used by the Tracker methods, goes directly to the noisy observed location, if the person
is seen. Finally, the belief error and Close Range are largely consistent with the results
of the Average Distance.

5.8.3 HB-CR-POMCP Searcher & Tracker and HB-PF Searcher &
Tracker

Finally, we evaluate the PF method HB-PF Searcher & Tracker and compare it to the
method found to be best so far: the HB-CR-POMCP Searcher & Tracker. Furthermore,
the methods were tested both with and without the use of dynamic obstacles, and here
we do take into account a probabilistic visibility with maximum (Eq. 5.7). As a reference
method, we used the See All Follower which always sees the person.

A noisy crowded environment was simulated by adding a group of 10 and 100
dynamic obstacles to the scene. A total of more than 8000 experiments were done,
repeating each of the conditions at least 140 times.

The experiments were separated in search and track. In the first, the person started
hidden from the agent and stayed there, and the simulation stopped when the agent
found the person and was close to it. Simulations were stopped if the maximum time
passed: 500 steps for the FME map and 5000 for the Tel. Square map. Here we
measured the time (steps) the agent needed to see the person. In the track experiments
the agent started seeing the person, doing 500 steps for the FME map and 1000 for the
Tel. Square map. In the track simulations we measured the distance to the person, the
time of visibility, and the recovery time, which is the time the robot needs to recover
the person’s position after not having seen him/her.
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5.8.3.1 Algorithm Parameter Values

The values of the parameters were obtained experimentally; the parameter values are
shown in Table 5.3, and the new parameters are shown in Table 5.6. The algorithms
updated the particles or belief every iteration, and the highest belief points were calcu-
lated every tupdate=3 s in the real experiments and every 3 iterations in the simulations,
if the person was not visible. For the HB-CR-POMCP Searcher & Tracker a tree search
depth (dmax) of 1 was used to only do simulations with a depth of one step, because
we did not use the policy, only the belief.

Table 5.6: The parameters values used during the real experiments and simulations.
Parameter FME Tel.Sq. Description

CR-POMCP Parameters
nbelief 1000 5000 number of belief points
dmax 1 1 maximum search depth

Particle Filter Parameters
nparticles 1000 5000 number of particles
wcons 0.01 0.01 PF weight if no obs., but consistent (Eq. 5.10)
winc 0.001 0.001 PF weight if no obs., but inconsistent (Eq. 5.10)
σw 1.0 m 1.0 m normalization of PF weight (Eq. 5.10)

Highest Belief
cells size 1 m×1 m 3.8 m×3.8 m cell size for HB grid
dmax_search 10 m 25 m maximum distance to search HB

Visibility Parameters
pv,max 0.85 0.85 maximum probability visibility Eq. 5.7
αvis 0.17 0.17 reduction factor Eq. 5.7
dv,max 3.0 m 3.0 m maximum distance full visibility Eq. 5.7

5.8.3.2 Results

The results of the simulations, the 140 repetitions, are shown in Tables 5.7 and 5.8
for the FME and Tel. Square map respectively. We did search and track simulations
separately, the measurements in time are discrete time steps, and for the distance, the
cells are converted to meters. The cell size for the FME was 1.0 m and for the Tel.
Square 0.8 m, and the average speed was 1 cell per time step. Although the See All
Follower was always given the location of the person, we do use the real visibility (i.e.
taking into account distance and obstacles) when we calculate the measurements (First
visible step, Visibility, and Recovery time), which gives their best possible values.

In the search phase, the first visible step (the discrete time until the person was
found) was measured, for which only a significant difference was found with the See
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All Follower. The high standard deviation is due to the large difference in the starting
position of the robot and person for the simulations. The distance to the person during
the tracking phase was found to be significantly less for the HB-PF Searcher & Tracker
(p < 0.001; Wilcoxon Ranksum test) in comparison with the HB-CR-POMCP Searcher
& Tracker, except for in the FME map without people walking around. When looking
at the belief error (Eq. 5.11), there is no clear difference between the methods.

The visibility was found to be significantly higher (p < 0.001; Fisher’s exact test)
for the HB-PF Searcher & Tracker, except for the case of 100 random people walking
around. Finally, for the tracking phase, the recovery time shows the average time the
agent needed recover the visibility of the person after having lost him/her. It shows
that after the See All Follower, the HB-PF Searcher & Tracker worked best for both
maps (p < 0.01; Wilcoxon Ranksum test) without dynamic obstacles. With dynamic
obstacles the See All Follower had better results, but there is no significant difference
between the other methods. For the HB-PF Searcher & Tracker algorithm, the use of
the detected dynamic obstacles in the algorithm had a positive effect on the distance
to the person when tracking, on the bigger map (p < 0.01; Wilcoxon Ranksum test).
Also for the visibility this had a positive influence.

The run time of the algorithms is not significantly different, for search the average
was about 250 ms/iteration, and for track about 216 ms/step. Note that the run time
mainly depends on the number of particles for the HB-PF Searcher & Tracker or on
the number of belief points for the HB-CR-POMCP Searcher & Tracker.

5.8.3.3 Dynamic obstacles

Using the dynamic obstacles, which have been detected to update the probability map,
has a great advantage in certain situations, as shown in Figure 5.7. Left can be seen the
situation where there are particles maintained behind the detected dynamic obstacles,
whereas in Figure 5.7(b) that area is already cleaned. In this simulation the first method
needed 21 steps to find the person, whereas the latter needed 366 steps, because it went
around the obstacle, thinking that the person could only be hidden behind obstacles.
See a demonstration video on http://alex.goldhoorn.net/thesis/dynobst/.
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Table 5.7: This table shows the average and standard deviations for the measurements
of the simulations in the FME. The different algorithms are shown in columns, where
(d) indicates the methods that take into account dynamic obstacles. The type of
measurement is indicated in the first column, including the used unit and the type of
task (search or track). The First visible step is the first time (discrete time) when the
person was visible to the agent. The visibility indicates the amount of time (% of the
whole simulation) in which the person was visible to the agent. The distance to the
person is the average distance to the person, and the belief error, Eq. 5.11, indicates
how well the belief represents the real location of the person. The recovery time shows
the average time the agent needed to return to see the person after having lost him/her.
1The recovery time is identical to the recovery distance since the agent moves 1 m per
time step on average.
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First visible step 0 2.4 ± 3.2 4.5 ± 5.8 4.7 ± 8 5.3 ± 6.9 5 ± 6.5
[time steps] 10 3.1 ± 3.7 7.2 ± 9.1 6.9 ± 10.7 7.7 ± 11.8 7.4 ± 10.1
(search) 100 8.4 ± 6.4 67.4 ± 71.1 90 ± 111.1 65.2 ± 78.8 59.9 ± 67.5
Visibility 0 100% 93.7% 93.4% 94.5% 93.9%
[%] 10 100% 59.3% 56.5% 59.5% 58.4%
(track) 100 100% 2.4% 1.8% 2.8% 2.8%
Distance to pers. 0 1.0 ± 0.4 2 ± 1.4 2 ± 1.4 1.9 ± 1.5 1.9 ± 1.5
[m] 10 1.0 ± 0.4 3.2 ± 2.5 3.4 ± 2.6 3.3 ± 2.8 3.5 ± 2.9
(track) 100 1.0 ± 0.4 5.6 ± 2.9 5.4 ± 2.8 6 ± 3.2 6 ± 3.2
Belief Error 0 4.2 ± 3 4.4 ± 3.3 5.1 ± 3.1 5 ± 3.2
(εb) [m] 10 5.1 ± 3.2 5.4 ± 3.4 6 ± 3.1 5.7 ± 2.9
(search) 100 7.4 ± 1.9 8 ± 3.4 7.7 ± 1.8 7.5 ± 1.8
Belief Error 0 1.1 ± 1.1 1.1 ± 1.1 0.8 ± 1.3 0.9 ± 1.4
(εb) [m] 10 2.5 ± 2.5 2.8 ± 2.7 2.5 ± 2.9 2.6 ± 3
(track) 100 6.4 ± 1.9 6.3 ± 2.9 6.6 ± 2 6.7 ± 2
Recovery time 0 1.2 ± 0.5 2.4 ± 1.9 2.5 ± 2.1 2.4 ± 3.2 2.7 ± 3.8
[time steps] 10 2.2 ± 3.8 3.5 ± 4.4 3.9 ± 4.6 3.6 ± 5.2 3.8 ± 5.5
(track) 100 3.2 ± 5.7 48.8 ± 54.5 63 ± 67.2 46.5 ± 55.8 46.7 ± 53.9
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Table 5.8: This table shows the same measurements as Table 5.7, but for the Tel.
Square map.
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First visible step 0 13.0± 110± 106.2± 114.6± 110.4±
16.2 336.2 369.6 264.3 233.2

[time steps] 10 13.8± 105.6± 96.5± 93.7± 107.4±
21.7 285.5 273.8 189.3 237.1

(search) 100 14.4± 115.6± 127.7± 121.2± 117.5±
17.2 264.9 265.9 300.5 246.9

Visibility 0 100% 62.7% 61.6% 58.5% 60.4%
[%] 10 95.6% 51.2% 45.6% 48.8% 49.0%
(track) 100 70.5% 13.8% 12.8% 15.9% 15.7%
Distance to pers. 0.0 0.8 ± 0.4 8.2 ± 9.1 8.6 ± 9.5 8.5 ± 9.0 8.3 ± 9.1
[m] 10.0 0.8 ± 0.4 9.4 ± 9.4 11.0 ± 10.4 9.8 ± 9.6 9.6 ± 9.4
(track) 100.0 0.8 ± 0.4 13.6 ± 9.4 15.4 ± 10.4 13.8 ± 9.7 13.8 ± 9.6
Belief Error 0.0 25.4 ± 11.8 26.1 ± 9.4 23.8 ± 6.9 23.4 ± 6.5
(εb) [m] 10.0 25.9 ± 10.0 26.5 ± 9.8 23.0 ± 6.9 23.4 ± 7.1
(search) 100.0 25.4 ± 9.3 25.2 ± 9.2 23.2 ± 6.2 23.3 ± 6.9
Belief Error 0.0 7.5 ± 10.1 7.8 ± 10.2 7.7 ± 9.4 7.4 ± 9.6
(εb) [m] 10.0 9.0 ± 10.2 10.8 ± 11.3 9.2 ± 10.0 9.0 ± 9.9
(track) 100.0 14.9 ± 9.2 16.7 ± 10.4 14.1 ± 9.3 14.2 ± 9.2
Recovery time 0 1.2 ± 0.5 14.9 ± 31.6 15.3 ± 32.5 19.5 ± 34.2 19.1 ± 34.8
[time steps] 10 2.2 ± 3.8 13 ± 27.9 15.6 ± 35.5 15.4 ± 31.6 15.5 ± 32.2
(track) 100 3.2 ± 5.7 22.2 ± 42.7 24.8 ± 48.6 19.7 ± 41.2 20.1 ± 41.9
Recovery dist. 0.0 1.0 ± 0.4 11.9 ± 25.3 12.2 ± 26.0 15.6 ± 27.4 15.3 ± 27.8
[m] 10.0 1.8 ± 3.0 10.4 ± 22.3 12.5 ± 28.4 12.3 ± 25.3 12.4 ± 25.8
(track) 100.0 2.6 ± 4.6 17.8 ± 34.2 19.8 ± 38.9 15.8 ± 33.0 16.1 ± 33.5
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(a) Agent using dynamic obstacles. (b) Agent not using dynamic obstacles.

Figure 5.7: (a) The simulated agent using dynamic obstacles, and (b) not using dynamic
obstacles. The left image of the image pair shows the person as red circle, the blue
circle as the robot, and yellow circles are other people walking around. The black cells
are obstacles, light grey are cells visible to the person, and dark grey are not visible
cells. The right part shows the probability map, i.e. belief, of where the person could
be where red is a high probability, white low, and light blue zero.

5.9 Real-life Experiments

Different real-life experiments were done with our mobile robot Dabo in different urban
environments. Volunteers were used as person to track, and others as dynamic obstacles
obstructing the robot’s vision by passing in front of the robot or by standing in a group
of people. The robot did not move quickly for security reasons, and therefore, the
tracked person was also asked not to move too fast, furthermore, the minimum distance
was set to be 80 cm. To be detected, the person wore a marker, see Figure 5.9, such
that the robot was able to recognise him or her.

All the statistics are based on the data measured by the robot, so the distance
travelled by the person is more than the values reflected in the table.

5.9.1 POMCP Hide-and-seek

The experiments presented in the previous chapter with the hide-and-seek game, were
done in the FME (6 m × 9 m) environment, but the time and space were discrete.
However, the experiments reported in this chapter, were done in continuous space,
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Figure 5.8: Hide-and-seek experiments in the FME with Dabo. The red arrows show
the past trajectory of the robot, and the yellow its next goal. The blue line shows the
trajectory of the person with the circle being the last location. The photo shows the
current situation. The green square at the left and the blue are at the right represent
the base.

meaning that both players were allowed to be at any location on the field, not limited
to grid cells; moreover, there were no discrete time steps. The robot continuously
received updates of the person tracking algorithm, and used this to plan the next
action, which caused the robot to move continuously. The methods run at maximum
100 Hz, the Smart Seeker in practice run on average at 31.3 Hz, and the CR-POMCP
at 1.2 Hz. The only limitation we set for the person was to not walk too fast, since the
robot moved slowly.

Preliminary experiments were done on the BRL map, both with the Smart Seeker
and the CR-POMCP, for which the triangle reward was used. The latter showed a
protective behaviour, tending to stay near the base. The Smart Seeker did leave the
base once the person was visible, trying to catch him.

After the previous issues were solved, more extensive experiments were done on the
smaller map, see Figure 5.8. A compilation of some experiments is shown in a video
available on http://alex.goldhoorn.net/thesis/hs-pomcp. Here the simple reward was
used, since in simulation this gave better results. More than 25 experiments were done
with 10 persons (playing as glshider), from which 21 games succeeded and four stopped
because of an error on the robot. When we look simply at the win results, then the
outcomes can be seen as similar for both seekers. Both methods won one time, and
both ended in a tie two times. One tie was due to reaching the maximum time, and
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Figure 5.9: Dabo performs real-life experiments at the FME environment. Top: Some
scenes of the performed experiments. Center: The trajectory during the experiments,
indicated by the line. Bottom: The belief of the person’s location (red represents a
high probability). Note that the maps are scaled differently.

three times the hider and seeker reached the base at the same time. The other times
the hider won, but in most of the cases this was because the person walked too fast.
The movement of the robot was relatively slow and the input of the people tracker was
sometimes erroneous, which caused the robot to turn often and slow down more. The
experiments with the CR-POMCP took slightly more time (103 ± 85 s) than those
with the Smart Seeker (75 ± 21 s).

5.9.2 HB-CR-POMCP Searcher & Tracker

In this section, we discuss the results of the search-and-track experiments done in the
three urban environments (see Section 3.1): FME, BRL and Telecos Square (1 and 1a
in Table 3.1). We tested search, track, and search-and-track as a whole for the HB-
CR-POMCP Searcher & Tracker. The used parameters are shown in Table 5.3, and
the visibility in the algorithm is assumed to be infinite (i.e. not probabilistic), nor were
the dynamic obstacles taken into account for planning. The videos are available on:
http://alex.goldhoorn.net/thesis/st-pomcp/.

In simulation, the algorithms were run in time steps, in which all players executed
an action at the same time; for the real-life experiments the algorithm was running con-
tinuously, that is, the planning was done real-time, while the robot was moving. First,
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an observation was done by the robot (i.e. receiving the robot’s and person’s position),
this was fed to the planning algorithm, and finally, the resulting new robot position
was sent to the navigation planner (see Figure 5.4). To prevent the planning algorithm
from running too quickly, a minimum time of 400 ms was set between iterations. In
practice, the algorithm ran on average 2.1 ± 8.3 Hz in the smallest environment, FME,
in the BRL environment at 0.9 ± 1.2 Hz, and in the Telecos Square at 0.9 ± 2.0 Hz.

5.9.2.1 Analysis

Experiments of more than one week were done with Dabo in the different environments
(Figures 5.9-5.11). The total trajectory of the robot was around 3 km for all the
successfully executed experiments, summing up to more than 3 hours. Some statistics
of the experiments are shown in Table 5.9. All these data were obtained from the
observations of the robot, and therefore, might include a small measure error. The
path length of the person, and the average robot-person distance were calculated when
the robot saw the person. The table shows per map and in total, the time of recorded
experiments, the path travelled by the robot and the person, their average speed, and
the part of time the person was visible to the robot.

Experiments in the FME environment showed that, when using the Simple Follower,
the robot did not move most of the time (50.4%; p < 0.001, Fisher’s exact test),
therefore, the robot was not able to follow the target. In contrast, when using the
HB-CR-POMCP Searcher & Tracker, the robot moved all the time when the person
was not visible, except for 3.7% of the time, and therefore it could follow the target.
The CR-POMCP method alone showed promising results in simulation, but in the real-
life experiments it moved too slowly to follow the person, for which we extended the
method to the HB-CR-POMCP Searcher & Tracker, as explained in Section 5.6.

Extensive experiments with the HB-CR-POMCP Searcher & Tracker were done
in the three environments. We started doing experiments in the FME environment,
Figure 5.9, because this is a relatively small, and therefore relatively easily controllable.
However, the task is still challenging because there were two artificial obstacles present,
there were other people walking in front of the robot, and due to sensor noise, or bad
light conditions the robot was not able to recognise the marker always. In the three
snapshots, shown in Figure 5.9, can be seen that only in the last the robot recognised
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Figure 5.10: Top: Some scenes of the performed experiments in the BRL. Center:
The trajectory during the experiments, indicated by the line. Bottom: The belief of
the person’s location (red represents a high probability). Note that the maps are scaled
differently.

the marker (indicated by the red dot in the centre map). The second snapshot shows
that the person with marker was in front of the robot, but the robot did not see the
marker, and nevertheless, the position of the person was stored in the belief, which is
shown in the image below. As indicated in Table 5.9, more than two hours of recorded
experiments were done covering over 800 m. The lower visibility percentage of the
person is because the person, while walking through the environment, frequently got
hidden behind an obstacle, whereas in the other environments there are larger open
spaces.

The BRL environment, see Figure 5.10, was a good exercise to have long trajecto-
ries in which the robot could find, and then follow the person during a longer time.
The average robot-person distance (Table 5.9) here was lower, because of the longer
experiments in which the robot was able to follow the person continuously. In some
cases, while following and temporarily losing the person, the robot did not go in the
right direction. In the left snapshot of Figure 5.10 the robot did not see the person
anymore, but still kept track of her location through the belief map. The belief was
still propagated, but when the robot was at the location of the person (as shown in
the snapshot), the person went to the right, but the robot’s belief was higher to the
left. After going left the robot lost the person, but started searching for her again, and
found her.

The last environment, Telecos Square, as shown in Figure 5.11, was probably the
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Figure 5.11: Top: Some scenes of the performed experiments in the Telecos Square
environment. Center: The trajectory during the experiments, indicated by the line.
Bottom: The belief of the person’s location (red represents a high probability). Note
that the maps are scaled differently.

most complete environment, since it combines indoors, outdoors, columns, a square
with trees, etc. More than an hour of experiments were recorded in which the robot
run more that 800 m, and the robot was on average 3.8 m from the person. Note, that
although this is not close, it is an average of the whole experiments in which the person
started far from the robot. We tried several situations in which the robot started inside,
and had to find the person outside, and other situations in which the robot followed
the person who walked behind a group of people. In this environment there were some
small trees (middle snapshot of Figure 5.11), which were modelled as being obstacles
(of 0.8 m × 0.8 m) to avoid the robot going there, even though they were much smaller
and therefore only slightly obstructed the vision. When the person was in that area,
and not behind a tree, the belief was still propagated behind the trees. Also in this
case the robot was able to find the person again.

5.9.3 HB-CR-POMCP Searcher & Tracker and HB-PF Searcher &
Tracker

In these experiments the HB-PF Searcher & Tracker has been compared to the HB-
CR-POMCP Searcher & Tracker for search and track. In the FME environment three
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Table 5.9: Some statistics of the real-life experiments with the HB-CR-POMCP
Searcher & Tracker, per environment: the total time, length of the path of the robot,
and person, average distance between the robot and person, average speed of the robot
and person, and the visibility of the person. The total row shows the sum for the first
three columns, and the average over all the data for the other columns. ∗Measurements
which include the person were only measured when the person was visible to the robot.
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FME 135 834.8 414.7 3.6 (± 1.8) 0.25 (± 0.93) 0.56 (± 3.82) 47.6
BRL 19 188.7 187.5 2.7 (± 1.9) 0.16 (± 0.26) 0.35 (± 0.58) 56.8
Telecos Sq. 72 844.6 725.8 3.8 (± 2.8) 0.21 (± 0.53) 0.43 (± 1.08) 57.0
Total 226 1868.2 1328.0 3.5 (± 2.4) 0.21 (± 0.34) 0.45 (± 1.75) 53.0

experiments were done and all of them were successful (i.e. without errors). The
total robot movement was 160 m, the total person movement was 35 m (when visible)
and the total experiment duration was 702 s. In the Tel. Square environment 18
experiments were done, of which 11 were successful (the robot was able to search and
track the person), and in 7 experiments several problems occurred. The issues were not
related to the search-and-track method, but to software failure or hardware problems
(e.g. temperature or low battery) that stopped the robot. In the 11 experiments the
robot moved 1173 m, the person moved 148 m (when visible) and the total duration
of the experiments was 5925 s (more than 1.5 h). Table 5.10 shows an overview of
all the experiments’ statistics, which are based on the data measured by the robot’s
sensors, so the distance traveled by the person was more than the values reflected
in the table. The videos of the experiments and more information can be found on
http://alex.goldhoorn.net/thesis/st-pf/.

We were not able to get the same statistics as the simulations (Tables 5.7-5.8) for
the real-life experiments, due to two main reasons. First, the ground truth should be
known to have correct evaluation measurements like in the simulations, and since most
global person localization methods have a low precision, we decided not to use any.
Instead, we used the person location obtained with the leg and AR marker detectors
(see Section 3.5), which allow us to calculate the distance to the person when the
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Table 5.10: Summary of the real-world experiments with the HB-PF Searcher &
Tracker. 1When the person is visible to the robot, because we used the robot’s sensors.

Measurement FME Tel.Sq.
Average distance to person1 [m] 2.8± 1.4 4.2± 2.4
Person visible time [%] 19.6% 3.2%
Average number of dynamic obstacles 4.0± 1.7 3.2± 2.4
Max. number of dynamic obstacles 8 16

person is visible. Second, several problems during the experiments caused the robot to
stop a few seconds, extending therefore the time measurements. Nevertheless, we are
able to show some descriptive statistics, as shown in Table 5.10, and we were able to
obtain more specific statistics for the search and search-and-track experiments shown
in Table 5.11.

For the search experiments we calculated the time to first seeing the person; the
tracking is counted from when the person is found, and in this case, we measure the
average distance to the person, visibility, and the recovery time. Note that the Belief
Error can not be calculated since it requires us to know the ground truth.

5.9.3.1 Smaller map – FME

The FME map (Figure 5.12(a)) was slightly easy for the robot, since the area is rel-
atively small, however, there were always two fixed obstacles where the person could
hide. Furthermore, it can be seen in Figure 5.12(a) that the people standing in front of
the robot also were used as obstacles, because there was a belief (i.e. particles) behind
them.

In Table 5.11, for the FME, we only show one experiment because this was a com-
plete search-and-track experiment, and in this experiment there were four people walk-
ing around. We can see that the distance to the person and also the recovery distance
(comparing it to the recovery time) are comparable to the results of the simulation
(Table 5.7).
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(a) Experiments at the FME (17 m × 12 m).

(b) Experiment at the Telecos Square (60 m × 55 m).

(c) Other experiment at the Tel. Square.

Figure 5.12: The experiments using the HB-PF Searcher & Tracker in two environ-
ments. The center image shows the map used for localization with the robot (blue),
detected people (green), and the laser range detections. The right image shows the
probability map, i.e. belief, of where the person could be where red is a high prob-
ability, white low, and light blue zero. The blue circle indicates the location of the
robot, the light blue circles are the locations of other nearby people, and the cross is
the robot’s goal.
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5.9.3.2 Bigger map – Telecos Square

In the bigger map, the robot needed more time to explore the environment, because
of its size and the relatively low speed of the robot. Compared to the experiments in
subsection 5.9.2, here we also includes searching in the presence of dynamic obstacles,
which has been shown to be important in several experiments. In various experiments,
the robot looked for the person behind one or more dynamic obstacles, such as for
example in Figure 5.9.3(a) and (b), where three people in front occlude part of the
map, which otherwise would be visible to the robot.

In some occurrences of false positive detections, the robot stayed longer than re-
quired, because the robot assumed that the person was near to it. Then, the robot
recovered either because it detected the real person or the false positive detection
disappeared. The false detections were because other person’s legs were detected in
combination with a falsely detected AR marker.

In Table 5.11, we include for the real-life experiments the same measurements that
we did in simulation. The first visible step should be compared (between simulation
and real-life experiments) using the distance and not the time, since the robot stopped
several times without moving due to external problems. Since in the real experiments
there were around 5 to 10 other people walking around in the scene, we should com-
pare it to the 105.6 ± 285.5 time steps in simulation, which is about 84.5 ± 228.4 m
(0.8 m/cell). In the real experiments these values were lower, which might be because
only a few search start positions were tried, whereas in simulations many completely
random positions were tried. The visibility (in the tracking phase) was lower in the real
experiments, mainly because the robot’s vision system is worse than in the simulated
version, which for example assumes a full panoramic view; note that in Table 5.10 the
visibility was very low, because it includes exploration experiments in which the person
was not present. The average distance to the person when tracking for the simulations
was 7.5 ± 7.5 m, which is more than in the real world, because there it could only be
calculated when the person was visible. The lower real-world recovery distance could
be explained by the low speed of the person.

The real experiments showed us that the HB-PF Searcher & Tracker is able to
search and track the tracked person, also when other people are partly blocking the
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Table 5.11: Here the average values are shown for the real-world experiments. 1Only
person locations are used of measured points, i.e. when visible to the robot. 2The data
for the FME has only one experiment.

Measurement FME2 Tel.Sq.
First visible time [s] (search) 4 132.5± 84.8
First visible distance [m] (search) 0.35 37.6± 23.9
Visibility [%] (track) 25.2% 16.0%
Distance to person1 [m] (track) 2.9± 1.4 4.2± 2.5
Recovery time [s] (track) 17.1± 18.6 22.9± 40.0
Recovery distance [m] (track) 3.0± 5.5 4.3± 6.6
Robot movement/experiment [m] 105.5 62.5
Person movement1/experiment [m] 32.0 13.2

field of view.

5.9.3.3 Examples of the Experiments

Finally, we will explain shortly some of the real-life experiments using the HB-PF
Searcher & Tracker, the videos can be found online.

Searching and tracking in the FME with Dynamic obstacles: Figure 5.13
shows the experiment done in the FME with up to four other people walking around
(as dynamic obstacles); it can be seen that the agent assumed the tracked person could
be hidden behind the people. The experiment started (a) with the person with tag
being hidden behind two other people; then quickly the robot detected the person (b)
when he became visible enough; but after not detecting him for a longer time, the belief
propagated behind the obstacles (c), but later on the person was recovered again (see
the video); at the end of the experiment (d) the AR marker detection algorithm falsely
detected a marker in the corner where another group of people was sitting.

Searching and tracking in a larger environment: An experiment done at the
Telecos Square is shown in Figure 5.14, which again started with the person being
occluded by two people in (a); next (b) the robot found the person and; (c) followed
the person, but lost him since he walked a bit faster, nevertheless, the belief was spread
in the area where the person was; and a bit later the person was found again (d).
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Figure 5.13: An experiment at the FME, where the person started hidden behind two
other people.

Figure 5.14: An experiment at the Telecos Square, where the person was hidden behind
two other people, then discovered, and later lost temporarily due to the distance.

5.10 Discussion

The first presented method, CR-POMCP, was found to work well in simulation for hide-
and-seek in continuous state space, but when we used it with the real robot however, we
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encountered several problems. This led to the HB-CR-POMCP, and finally, we added a
tracker to go to the exact person’s location, which led to the HB-CR-POMCP Searcher
& Tracker. In the HB-CR-POMCP method, the POMDP is only used to maintain the
belief and the RL policy is not used anymore. Since the POMCP belief update method
works the same way as a PF, we introduced the HB-PF Searcher & Tracker. The latest
method worked as well as the CR-POMCP based method, and furthermore, is simpler.
In these methods, the Highest Belief is used to localize the person.

5.10.1 Comparison of Methods

The final methods, the HB-PF Searcher & Tracker and the HB-CR-POMCP Searcher
& Tracker, implement a different belief update method, but have in common the HB
calculation and the goal selection. However, when we look in detail to both methods,
the belief update is very similar because they both use Monte-Carlo simulations to
propagate the particles (or belief points). This, therefore, explains their similar results.

Our methods work on-line and are able to both search and track a person, and do
not require an initial observation, in contrast to trackers as [Fleuret et al., 2008, Lian
et al., 2015].

In Volkhardt and Gross [2013], they searched for a person, and to detect him/her,
they looked at their legs, face, body-shape and motion, which is a more realistic method
than our marker; however, the marker allowed us to do experiments in a large outdoor
environment. Their search was guided by a list of predefined guide points, and they
assumed there to be only one, not moving, person.

Granata and Bidaud [2012] used a fuzzy controller to decide on the use of different
behaviours, such as returning to the last seen location, whereas we keep track of the
person’s location through a belief map, which our method also uses to search for the
person. Furthermore, they did experiments in a relatively small indoor environment,
whereas we did outdoor experiments in large urban environments, where we focused on
searching.
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5.10.2 Noise

Noise handling is done by adding noise to the belief points and particle filters. The CR-
POMCP adds Gaussian noise to the observations and state in the POMDP simulator G
in Algorithm 5.11. Our PF method adds noise to the state when doing the step and
choosing the direction (Eq. 5.9).

5.10.3 False Positive and Negative Detections

False positive and negative detections depend on the sensors and environment, but they
are important to take into account, since they do occur. Monte-Carlo based methods
can cope with noisy signals due to the simulated noise, which is done by the POMCP
and PF methods.

CR-POMCP: For the CR-POMCP method, the false positive and false negative
handling depends mainly on the POMDP simulator G, shown in Algorithm 5.11. The
simulator is used to generate new belief points through the internal simulations. After
having received the new observation, it is used to choose the next belief from the policy
tree (see Figure 5.2). Next, G is used again to fill the belief B until it has nbelief points.
The simulator function G has several internal parameters which allow us to handle false
positive or negative detections.

In the case of a true positive or true negative detection, the observation is consistent,
and therefore the belief choice will be correct. When a false negative detection occurs,
the observation is hidden, while it should have been the person’s location. This is coped
with (in Algorithm 5.11) by generating the observation hidden, even though the person
should have been visible.

A false positive detection can occur for two reasons: first, because the sensors detect
something incorrectly as person; or second, because the obstacle is bigger on the map
as in reality (due to the lower resolution), and therefore, the person is visible while
this was not expected (according to the ray tracing function applied on the map). The
latter case results in the correct person location, but the first case is problematic, since
we cannot recognise a false positive detection, and it causes the belief to be focused
on the incorrect location. Seeing the person on the correct position (i.e. the second
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case) is handled in line 12 (in Algorithm 5.11), by returning the location of the person
as observation, and for the first case, a random position is generated in line 14. This
results in a policy tree where an observation orand of this randomly chosen person
position actually results in a belief Bo, which contains the expected state s′. Note,
however, that the belief Bo will contain much more states that represent observation o.

Particle Filter: For the PF, the false positive and false negative detection handling is
done by the weight calculation (Eq. 5.10), because the weight represents the probability
of the particle to be propagated. In the case of a negative detection (i.e. hidden), a
true negative will result in the weight wcons (third case of Eq. 5.10), since the visibility
function Pvis (Eq. 5.7) returns 0 probability if the particle is not visible from the agent’s
location. If Pvis returns a higher value, we assume it to be a false negative detection
and therefore give it a lower value (fourth case of Eq. 5.10). In the case of a positive
value (i.e. we observe a position), the weight is calculated using the exponential function
(second case). The weight will be higher if the particle is closer to the observed location,
which is good if it is a true positive, but if it is a false positive this will disturb the
probability distribution.

5.10.4 Obstacle Modelling

Obstacles were modelled as discrete blocks of about 1 m × 1 m and being higher than
the agents. In our first methods we modelled the obstacles to block the complete vision,
however, some obstacles only result in partial occlusion, such as a small tree. Therefore,
in the CR-POMCP we introduced a probability of seeing "through" an obstacle: psee_occ.
The PF method tackles this problem by letting particles behind the obstacle have some
weight (Eq. 5.10).

The first visibility check method assumed to have infinite vision, but later on,
we introduced a visibility probability function (Eq. 5.7) that takes into account the
distance. This probability function allowed us to simulate the real environment more
realistically, probabilistically instead of deterministically.

Finally, dynamic obstacles were included in the model, taking them into account
when calculating the visibility probability. This allowed us to better predict the visi-
bility, and thereby, the potential locations of the person.
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5.11 Conclusions

In this chapter, we have improved the method to search-and-track with respect to the
previous hide-and-seek methods in various ways. First, the methods allow for a much
larger space to work on; second continuous state space is used; and third, the algorithm
run in real-time.

Instead of a POMDP, we have used a model that does Monte-Carlo simulations to
generate a policy: the CR-POMCP that makes use of the POMCP. In this method,
each time step an action is planned, however, in real-life experiments with the robot we
found that this lead to not efficient movements, therefore, we decided to use the belief
of the CR-POMCP to find the most probable location, i.e. the Highest Belief. Finally,
the HB-CR-POMCP was combined with a tracker that works in the case of seeing the
person, to assure a precise localization of the person: the HB-CR-POMCP Searcher &
Tracker.

Next, a modified Particle Filter, the HB-PF Searcher & Tracker was created and
is able to work without observing the location of the person. The PF model was used
to keep track of the belief, and by obtaining the HB, the method is also able to search
and track the person.

Comparing the HB-PF Searcher & Tracker method with the HB-CR-POMCP
Searcher & Tracker method, the first method is simpler, because it is easier to modify
the algorithm strategy in the PF than in the POMCP, even though the simulation
results are similar.

Furthermore, we have presented a method that takes into account dynamic obstacles
while searching and tracking a person. This, as expected, improves the search in
crowded areas, because it maintains a probability of the person being behind any of
the dynamic obstacles.
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Chapter 6

Search-and-Track with Multiple
Seekers

Using multiple robots instead of a single robot has several advantages, such as faster
execution of the task and robustness, however, in order to do reach these, the robots
should be coordinated correctly and efficiently. In this chapter, we use several agents to
search and track the person. The methods are based on the HB-CR-POMCP Searcher &
Tracker and HB-PF Searcher & Tracker, presented in Chapter 5, but here, we extend
them to be used on multiple robots that communicate the observations and use an
exploration method to divide the goals between the robots.

With the, in this chapter, presented methods we brought the following contributions:

• The Multi-agent HB-CR-POMCP Explorer and Multi-agent HB-PF Explorer
were presented; they allow a group of robots to perform search-and-track [Gold-
hoorn et al., 2017a].

• To distribute the search task, the robots use an explorer to decide the goals for
all agents [Goldhoorn et al., 2016, 2017a].

• Real-life experiments were done [Goldhoorn et al., 2016, 2017a].

6.1 Introduction

Even though it may seem obvious that the search by multi-agents should be faster than
by a single agent, an efficient and robust cooperation is not that evident. Within the
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Figure 6.1: The robots search and track the person while other people are walking
around obstructing the robots’ vision. In the lower map left the localization of the
robots can be seen (orange and blue robots), and at the right the probability maps of
the person’s location of both robots are shown.

area of social and cooperative robots, the nature of interactions between people and a
set of accompanying robots has become a primary point of interest. Our findings are
based on the behaviour of a team of robots, which operate cooperatively, to localize
people in an urban area and are able to follow them. The person can hide out in the
environment, while the robots, using a map, have to look for him/her.

We present a decentralized multi-robot approach that can search and track using one
or more robots that cooperate, communicating their observations and most probable
locations of the person. Internally the agents use a probability map of the person’s
location generated by either the Multi-agent HB-CR-POMCP Explorer or Multi-agent
HB-PF Explorer, for which the observations of all robots are used. Thereafter, the
most probable locations are marked and sent to all robots, such that each robot can
choose the best location to explore. In the case of a visible person, the robots track
the person while updating the probability map, since the observation could be a false
positive.

In Chapter 5, two methods were introduced to search and track the person: HB-
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CR-POMCP Searcher & Tracker and HB-PF Searcher & Tracker, which in contrast
to other previous approaches can run in real-time in large environments in continuous
state space, but in this chapter we go one step further. We make use of a team of
cooperative robots that work in dynamic environments and share their sensors infor-
mation to increase the performance of the task. Moreover, the robots are able to plan
the strategies and to localize people in a cooperative way. Their search strategy takes
into account the probability of a person being at a certain location, the distance to that
location, and whether the location is close to a search goal already assigned to another
robot. Even though, we make use of cooperative robots, they are also able to execute
the task alone, in case of communication failure for example.

Finally, the validation of the approach is accomplished by an extensive set of simu-
lations and a large amount of real experiments in an urban campus environment with
dynamic obstacles, using our mobile social robots Tibi and Dabo. In the remainder
of this chapter, we start with the system overview in Section 6.2 and the specific ex-
perimental settings in Section 6.3. In Section 6.4 we start explaining the methods
to maintain the belief cooperatively, next in Section 6.5, the goal selection method is
explained. Thereafter, in Section 6.6 the simulations and in Section 6.7 the real-life
experiments are detailed, and we finish with a discussion and conclusions.

6.2 Overview of the Approach

In this chapter, we present a method for multiple mobile robots to search and track
a person autonomously and cooperatively, which at the same time allows the robots
to operate individually when there is no communication between them or when only
a single robot is available. The method is shown in Figure 6.2, and is partly similar
to the architecture explained in Section 5.3, but the main difference is that it works
simultaneously with multi-agents at the same time.

The method (Figure 6.2) consists of four phases: the first phase, perception, is ex-
plained in detail in Section 3.2. The observation filter is used to choose an observation,
and possibly correct either the person location or the robot location or both of them.
For the multi-robot case, for each observation o = 〈oagent, operson, po〉 the probability of
correctness of the observation (po) was added, to distinguish between the correctness of
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Figure 6.2: The schema shows the complete distributed search-and-track multi-agent
approach with the same diagram for each agent and the communicated data, where the
diagrams of the first agent are shown in detail. At the left the phases of the search-
and-track method are shown. The blocks are algorithms or groups of algorithms, the
orange bold lined blocks were created by us. The arrows show how the output of one
algorithm is used as input for another and the communication between the agents (blue
lines).

the observation based on for example the sensors. For Tibi we put a lower po, because
its camera had a smaller fov than the camera of Dabo, while in our models, we assume
to have full 360◦ fov.

Together with the observations of the other agents, the belief is updated in the
Person Localization phase, for which we tried two algorithms: the Multi-agent HB-CR-
POMCP Explorer (based on HB-CR-POMCP, see Section 5.6) in which each robot
uses the probability map of the CR-POMCP to search and track a person; and the
Multi-agent HB-PF Explorer (based on HB-PF, see Section 5.7) which makes use of a
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PF.

In the third phase, the belief and observations are used to decide on the locations
where the robots should search for the person—which we call goals. If a robot detects
the person, then Tracking is carried out, otherwise an Exploration method is applied
that chooses the goals for each robot from the list of highest belief points of all the
robots. The goals are chosen taking into account the probability, the distance to the
goal and whether another agent already has a goal close to it.

Finally, the robot’s path planner (Section 3.4) plans and executes the path to the
chosen goal. Each robot executes the same algorithm and they share the observations
and HBs, as shown in the Figure 6.2.

6.3 Experimental Setup Improvements

In Chapter 3, the experimental settings were commented, and in Section 5.4 it was
already indicated which other improvements were made to the simulations, such as:
using a visibility probability (instead of a boolean visibility indication) and using dy-
namic obstacles. Here we mainly adapt the experimental settings for a multi-robot
environment.

The input of the belief update algorithms is the list of observations O =
{o1,o2, · · · ,on} of the different agents, as shown in Figure 6.2. Each observation
oi = 〈oagent,i, operson,i, po,i〉 contains the location of the robot (oagent,i), the observation
of the person (operson,i, which can be empty) and a correctness probability (po,i), which
indicates how much a person detector can be trusted. We estimated the correctness
probability based on experimental results. For example, Tibi had a worse camera than
Dabo, as explained in Section 3.3, and therefore we put a lower value for po,Tibi.

Ideally, the observations are sent and received synchronously, however, in the real
world this was not the case. In simulation there was no delay of the observations of the
other agents, but in the real-life experiments this did happen. Therefore, we set a time
limit for the observation to be used in the other robots. If the observation was too old,
it was not used. Although asynchronous or delayed observation messages do result in
a different belief, in a later step, the agents send each other’s highest belief points.
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The observation filter makes sure that the locations of the person and robot are
legal (i.e. within the map and not in an obstacle) by taking the closest most probable
location.

6.3.1 Visibility Probability

The probability of visibility is based on Eq. 5.7, and for the multi-agent case, the
probability is combined to calculate the probability of seeing location s2 from any
agent location s1 ∈ S:

P̄vis(S, s2) = 1−
∏
s1∈S

(1− Pvis(s1, s2)) (6.1)

6.4 Belief Update

In the present section, we explain the Person Localization phase, in which, we create
the belief to find the most probable location. Two methods are proposed to create the
belief: the first is based on the CR-POMCP (Section 5.5) and the second is based on the
PF (Section 5.7). Finally, we explain how the belief is processed to select the highest
belief points, and how this information is combined with the other agents’ results. The
next section explains how this belief is used to decide where the agents have to go to.

6.4.1 Multi CR-POMCP

In Section 5.5, we explained the single agent CR-POMCP, and here we extended the
model for multi-agent systems. The states for the multi-agent case were not changed,
because adding the other agents in the states would exponentially grow the amount of
states. For the same reasons the observations of the other agents were not used in the
learning phase, otherwise the policy tree would grow too wide. The other agent’s obser-
vations are used, however, in the belief initialization and update phase, as explained in
the rest of this section. Furthermore, our main interest is to keep track of the location
of the person.

For the multi-robot case, all the observations have their own probability (po,i)
which were added to take into account the accuracy and trustworthiness of the sen-
sors of specific robots. To generate the initial belief, nbelief states are generated,
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as shown in Algorithm 5.10, with two differences: first, in each iteration a random
o = 〈oagent, operson, po〉 ∼ O is chosen with probability po; second, the visibility proba-
bility function for multi-agents Eq. 6.1 is used instead of Eq. 5.7.

After having set the belief, the POMCP policy tree is created (see Algorithm 5.7),
as explained in subsection 5.2.2, by doing nsim simulations. Then, the best action is
chosen from the policy tree, and when it has been executed, the belief update is done.

Before the belief update, all the observations O are received from all agents, as can
be seen in Figure 6.2. The belief is updated with the observation o, which includes only
the information of the own agent, because including other agents’ positions would make
the policy tree grow very wide, and this would grow exponentially the policy search
time.

The belief is first updated by choosing the new Belief root node from the policy tree.
Since only the own observation is included in the POMDP model, as second update
step, the states in the new belief are checked for consistency with all the observations.
States that are found to be inconsistent are removed from the belief. Algorithm 6.13
shows the consistency check, which is done for each state in the belief s ∈ B, using the
observations of all agents O.

First, it is checked if the observed person locations are not hidden (line 4) and if
they are close to the belief state s (line 5), within a distance of dcons. Then, Eq. 6.1
is used (line 12) to calculate the probability that the person location of the state
should be visible to any of the agents. Finally, to take into account the sensor and
actuator noise, and uncertain, a uniformly random function Prand is used to decide
the consistency, which uses the visibility probability function. This results in a Monte-
Carlo-like sampling method.

As third step, states are added to the belief until it has nbelief states, like the CR-
POMCP method. Each new state sperson is randomly chosen from O with probability
po, and if sperson is hidden, then it is set to a random location where the person is not
visible to any of the agents; finally, Guassian noise is added with standard deviation
σperson.

The consistency check algorithm sometimes may reject a consistent observation as
being consistent, because we make use of the probability visibility and a random value
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Algorithm 6.13 The belief consistency check with as input state s and observation
list O. The function Prand randomly generates a value between 0 and 1.
1: function ConsistencyCheck(s,O)
2: isVisible = false
3: for o ∈ O do
4: if not operson is hidden then
5: if ‖sperson − operson‖ > dcons then
6: return false
7: else
8: isVisible = true
9: end if

10: end if
11: end for
12: p = P̄vis({oagent|o ∈ O}, sperson)
13: if isVisible then
14: if Prand( )> p then return false
15: end if
16: else
17: if Prand( )≤ p then return false
18: end if
19: end if
20: return true
21: end function

Prand; this allows the method to take into account possible lack of visibility of the
sensors.

6.4.2 Multi PF

For the multi-agent PF some changes have to be made to take into account all the
observations. First of all, the initialization has to be changed, and then we change the
weight function of the update phase of the PF.

The initialization is the same as the Multi-agent HB-CR-POMCP Explorer, ex-
plained in the previous section. The prediction step of the PF algorithm (see sub-
subsection 5.2.3.2) is a Gaussian movement, as shown in Eq. 5.9. Next, the update
step is equal to the single agent case, shown in Algorithm 5.12, except for the weight
calculation in line 2, which is changed by:

∀s∈S : sw = aggo∈O(w(s, o)) (6.2)
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calculating the weight of each particle s ∈ S, using Eq. 5.10, and then aggregating
them using either the minimum, maximum or average. In order to decide on which
aggregation function is the best, we can differentiate three situations with the examples
shown in Figure 6.3. In these examples there are four agents (s1 − s4), one person p,
and two particles p1 and p2:

1. None of the agents see the person (Figure 6.3(a)): p1 can only be seen by s1,
and not by the rest due to distance or occlusion. Particle p1 should be visible
for s1, and therefore, its weight is the last case of Eq. 5.10: w1

1 < winc, since it is
inconsistent with the observation; and the weight for the others is: w2,3,4

1 = wcons.
Here the best weight would be the minimum value w1

1, since the particle is at a
location where most probably the agent s1 would have detected the person if it
were at location p1. The particle p2 is not visible from any agent, and therefore,
is consistent with not having an observation.

2. Some agents see the person, others do not (Figure 6.3(b)): For s1 the particle is
visible, but it does not have an observation so the value is inconsistent, therefore
we use w1

1 < winc (Eq. 5.10), for s2 and s3 the particle is too far, and therefore,
w2,3

1 = wcons = 0.01; and for s4 the weight depends on the distance, which in
this case is high, resulting in a low weight. Again, the best option is to choose
the minimum value, because for s1 the person should have been visible. Particle
p2 is visible to s4 and therefore has a larger weight w4

2 > 0.1 than the weights
calculated for the other agents, which will have a w1,2,3

2 = wcons = 0.01. Here
we actually would prefer to choose the maximum weight, since this favours the
observation of s4.

3. The person is visible to all robots (Figure 6.3(c)): since all the agents have an
observation, the second case of Eq. 5.10 is used to calculate the weight. Here the
average would be best since there is no knowledge about which observation is the
closest to the real person location.

To combine the values we could use the maximum, minimum, or average; in the
first case, maximum, we would keep particles even though they should be visible to
a seeker but are not, such as can be seen in the first example. The minimum would
work in most cases, except in example 2, where s4 sees the person, and therefore has
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(a) The person is not visible.

p

s1

s2
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(b) The person is visible to one
agent (s4).

p
s1

s2
s4

s3

p2

(c) The person is visible to all
agents.

Figure 6.3: Three examples to show the best choice for an aggregation function, with
four seeker agents (s1 - s4) and one tracked person (p). The white circles p1 and p2 are
particles.

a much higher weight than the others. For the last example neither the maximum nor
the minimum would be correct. Using the average in the third example would be best,
and it also would work for the other examples, since it takes into account all values.

6.4.3 Highest Belief

Like explained in Section 5.6 and subsection 5.7.2, a 2D histogram is made by counting
the number of particles or belief points per cell, and by dividing them by the total
(nparticles or nbelief), to get the probability of the person being there. The size of the
cells of the histogram should be large enough to be stable, but small enough to be
sufficiently precise. In our experiments, we used cells of 3.2 m × 3.2 m for the large
maps, and 1 m × 1 m for the small map.

Next, for each agent i, the set Hi of nhb highest belief points are selected, and are
sent to the other agents (see Figure 6.2). Each h ∈ Hi contains a position hpos, and a
belief hb. The received highest probability points Hi of all other agents and of the agent
itself are joined by summing the beliefs for each highest probability point, and thereby,
generating the set of all highest belief points H, as can be seen in Algorithm 6.14.
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Algorithm 6.14 Join the lists of highest belief points of all n agents H =
{H1, H2, · · · , Hn}, where each highest belief point h = 〈hpos, hb〉 ∈ Hi contains a posi-
tion and belief hb.
1: function JoinHBs(H)
2: H = ∅
3: for all Hi ∈ H do
4: for all h ∈ Hi do
5: if hpos ∈Hpos then . Hpos is the list of positions in H.
6: Get ĥ ∈H where ĥpos = hpos
7: ĥb = ĥb + hb
8: else
9: H = H ∪ {h} . add HB point.

10: end if
11: end for
12: end for
13: return H
14: end function

6.5 Goal Selection

After the belief is updated and the highest belief points are created, received, and
joined, then, the Goal Decision phase (Figure 6.2) starts in which the robot either
tracks the person or explores the most probable locations. If the person is visible and
the observations are consistent then the agents follow the person side-by-side [Garrell
et al., 2013, tracking in Figure 6.2]. Otherwise the agents explore the joined highest
belief locations H, as shown in Algorithm 6.15, which is based on the work of [Burgard
et al., 2005]. Each agent calculates the goals for all agents, using the joined highest
belief points H. A score is calculated for each highest belief points h ∈ H per agent
location s:

expl_score(s, h) = wuUh + wd
dist(s, h)
dmax

+ wb
hb
bmax

(6.3)

where Uh is a utility function for the highest belief point h, s the agent’s position, hb
the belief of point h, and dist calculates the shortest path distance. The second and
third term are normalized by the maximum distance dmax, and maximum belief bmax

with respect to the list of potential target locations H. The utility Uh [Burgard et al.,
2005] is initialized with 1 (line 1 of Algorithm 6.15), and is updated before searching
the goal of the other robot (line 4), where gi is the already assigned goal to agent i,
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Algorithm 6.15 The explorer finds the goals gi for all agents i ∈ A using the score
function Eq. 6.3.
1: ∀h∈HUh = 1
2: for all i ∈ A do
3: gi = arg maxh∈H expl_score(sperson,i, h)
4: ∀h∈HUh = Uh − Pexplore(dist(h, gi))
5: end for

and:

Pexplore(d) =

1.0− d
dmax_range

, if d < dmax_range

0, otherwise
(6.4)

with dmax_range being the range within which we want to reduce the chance of other
agents’ goals being chosen. The terms of Eq. 6.3 are weighted by wu, wd, and wb, and
the values we found to work well are: wu = 0.4, wd = 0.4, and wb = 0.2.

The order in which the agents are assigned the goals is important, since the assign-
ment of a goal h to an agent reduces Uh, and therefore, reduces the probability of other
agents being assigned this goal. We chose to assign the agent with the highest sum of
probabilities (

∑
h∈Hp

bh) a goal first, and the lowest last. Most importantly, the order
should be consistent for all agents such that they calculate the same goals, assuming
they have received all highest belief points Hi. With this method it can occur that
an agent a1 is assigned a goal g1, which is further away than a goal g2 assigned to a2,
because the latest was assigned firstly. Note that finding the closest goals g ∈ G, such
that the sum of the distances with the agents a ∈ A is minimum:

min
a∈A

∑
g∈G

dist(a, g)

has a complexity of O(‖A‖!). Therefore, we approximate it by re-iterating over the
calculated goals and assigning the closest in the same order as we calculated the score
(i.e. on sum of the HB). It can be seen that for agents from which no positions have
been received no goals are calculated.

Finally, to prevent the robot from changing its goal too often, the goal is only
changed every tupdate time, or when the person is visible.

The method explained in this section is only guaranteed to give the same search
goals if they receive all the highest belief points of all agents synchronously. If not all
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highest belief points are received, the resulting search goal positions may be close to
each other, which results in a less efficient search.

6.6 Simulations

Here, the simulations for the multi-agent models are discussed; they were done in the
same way as explained in the single robot case in Section 5.8. The movements done by
the robots were a step of 1 cell in the direction of the goal using the shortest path.

6.6.1 Multi-agent HB-CR-POMCP Explorer and Multi-agent HB-PF
Explorer

In the simulations, the two belief update algorithms were tested: the Multi-agent HB-
CR-POMCP Explorer and the Multi-agent HB-PF Explorer. For the latter, two vari-
ants were tried with different ways to fuse the observations of the different agents in the
update phase: the average and the minimum. As an upper line we added a best-case
algorithm, the See All Follower, which is a follower that always knows the location of
the person, independent of the distance or any obstacles being between the agent and
the person. Also the influence of the number of agents was tested using from one to
five agents, which were searching simultaneously either with or without communication.
For the visibility, the probability function Eq. 6.1 was used.

The experiments were done on the Telecos Square map (version 3 in Section 3.1).
In this version of the Telecos Square map, we added access to another area through two
ramps which created a loop. The loop made the experiments more interesting, since
the person can now walk in circles, requiring the agents to cooperate.

A crowded environment was simulated by adding a group of 10 or 100 people (dy-
namic obstacles) to the scene, who reduced the robot’s visibility, but they did not block
the agents’ paths. The movements of the simulated people (including the person to be
found) were semi-random; they were given a random goal to which they navigated us-
ing a shortest path algorithm, and when the goal was reached, a new random goal was
assigned.

More than 40 000 experiments were done, repeating each of the conditions at least
250 times. Like in the previous chapter, for each run of simulations the robot’s start
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position, and the person’s start and path were generated randomly. To make the
comparison as fair as possible the same positions were used for all the algorithms and
conditions, such that the initial state and the person’s path were the same.

6.6.1.1 Simulation Goals

The goals of the simulations were to see how well the presented search-and-track meth-
ods worked for multiple agents and under different circumstances. Here, we limited
the tests to adding up to 100 dynamic obstacles and using up to five seekers, which
either had communication or had not. We split the simulations in two types: first, in
searching and, second, in tracking. For the first we wanted the person to be found as
fast as possible, and for tracking, the agent should be close to the person as long as
possible and see him/her. In all cases the See All Follower should work best, since it
always sees the person.

The searching simulations were started with the person being hidden to all the
agents and without moving. The simulations ended when either a robot reached the
person at a distance of 1 cell (0.8 m in the used map), or 2 000 steps were reached. The
simulations were measured using the time it took for at least one agent to see and to be
next to the person. The tracking simulations were done with the person being visible
to one or more of the agents and continued for 500 time steps. Other measurements
were the distance between the agent and the person, hereby taking the lowest distance
over all of the agents. Furthermore, for all simulations the belief error εb (Eq. 5.11)
was measured.

6.6.1.2 Algorithm Parameter Values

The values of the parameters used in the simulations and real experiments, which were
explained in Section 6.4 and Section 6.5, are shown in Table 6.1. The parameters po,Tibi
and po,Dabo indicate the trustworthiness of the sensors, and since the vision of Tibi was
less than the 360◦ vision of Dabo, we gave it a lower probability. The other parameters
for the HB-CR-POMCP are shown in Table 5.3. All the parameters were tuned first
in simulation, and later while doing tests with the real robots.
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Table 6.1: The parameter values used during the real experiments and simulations.
Parameter Value Description

Common Parameters
σperson 0.2 m std. dev. of Gaussian noise person’s movement
pv,max 0.85 maximum probability visibility (Eq. 5.7)
αvis 0.17 reduction factor (Eq. 5.7)
dv,max 3.0 m maximum distance full visibility (Eq. 5.7)
po,Tibi 0.3 trustworthiness of Tibi’s observations
po,Dabo 0.7 trustworthiness of Dabo’s observations

Multi-agent HB-CR-POMCP Explorer
nsim 2500 number of simulations
nbelief 2000 number of belief points
pfalse_pos 0.001 false positive probability
pfalse_neg 0.3 false negative probability
psee_occ 0.01 probability of seeing through an obstacle
dmax 1 maximum POMCP tree search depth
dcons 0.7 m consistency check distance (Algorithm 6.13)

Multi-agent HB-PF Explorer
nparticles 2000 number of particles
σw 1.0 spread of particle weight (Eq. 5.10)
wcons 0.001 weight (Eq. 5.10) when observation consistent
winc 0.0001 weight (Eq. 5.10) when obs. inconsistent

Highest Belief
cell size 3.2 m × 3.2 m 2D histogram cell size
nhb 10 number of highest belief points
tupdate 3 s / 3 steps wait time to re-calculate goal

Goal Selection
wu 0.4 weight for utility explorer score (Eq. 6.3)
wd 0.4 weight for distance explorer score (Eq. 6.3)
wb 0.2 weight for belief explorer score (Eq. 6.3)
dmax_range 30 m maximum range of influence score (Eq. 6.4)

6.6.1.3 Results

The results of the search simulations are shown in Figure 6.4, visualizing the average
time (discrete steps) it took to find the person. The time is measured until one of the
agents found the person and was next to him/her. The influence of communication is
shown in the rows and the effect of the number of dynamic obstacles is shown in the
columns. The See All Follower was only run for one agent. Since none of the data
were normal we have used the Wilcoxon ranksum test, 2-sided to compare the different
conditions.

For all cases, the See All Follower was significantly faster (p < 0.001) than any
other algorithm, since it was always able to see everything. It can be seen that it
took more than four times longer when using one agent with the PF that had visibility
limitations. When using only one agent, the agents using PF were significantly faster
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Figure 6.4: The graphs show the average (and 95% confidence interval bars) of the
time it took for one or more agents to find and get close to the person. In the first row
there is communication between the agents, in the second there is not. In the columns
the number of dynamic obstacles change. As a reference, the See All Follower took
34.7± 0.6 steps (mean ± standard error).

than using the CR-POMCP (p < 0.001). For the multi-agent simulations the use of
communication was also significantly better (p < 0.05), except for some cases with the
Multi-agent HB-CR-POMCP Explorer. In most of the cases, the Multi-agent HB-PF
Explorer was the fastest method, and in particular the version that used the average
weight combination.

For the track phase, we would like the robot to stay close to and have the person
visible as long as possible. Figure 6.5 shows the average time it took to find the person
again after losing him/her. The See All Follower still was best, but between the tested
methods there was no clear winner, nor did communication give an advantage for one or
another method, which most probably was because the robots were close to the person
already (see Figure 6.5). The increasing number of robots reduced the recovery time
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Figure 6.5: The graphs show the average (and 95% confidence interval bars) time to
discover the person it is following after having lost it due to (dynamic) obstacles for
example.

significantly, however, we did not simulate robots blocking each other’s path, which in
the real world would reduce the efficiency of having multiple robots in a small area.

The average distance between the person and the closest agent when following
is shown in Figure 6.6. The PF method resulted in lower distances, and also using
communication resulted in lower tracking distances.

The belief error (Eq. 5.11) was calculated for the algorithms, which use a probability
map of the location of the person. For the search simulations, the overall average and
standard deviation of the belief error were 25.4±8.9 m when there was communication
and 27.8±7.5 m without. Figures 6.7 and 6.8 show the average belief error for the search
and track phase respectively. The lowest belief error for the search simulations with
communication was with the HB-PF Searcher & Tracker method, using the minimum
weight combination. There was no clear difference in the other cases.
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Figure 6.6: The graphs show the average distance between the person and the closest
agent when following. The rows show communication or not, and in the columns the
number of dynamic obstacles change. The See All Follower had the person always in
sight and therefore was at a distance of about 0.88 m, i.e. the following distance.

The influence of having more dynamic obstacles is not clear (i.e. no significant
difference for most cases) in the search time (Figure 6.4) because they only block the
agents’ vision and not the path, i.e. the robot can go through the dynamic obstacles.
From Figure 6.5 it can be seen that 10 dynamic obstacles almost did not influence the
recovery time, but 100 did. Because of the surface (1400 m2) having 10 people walking
around randomly had a low probability of influencing the vision of the robot, whereas
100 had a much higher probability, spreading the area more. Finally, the influence of
dynamic obstacles can also be seen in the average distance to the person (Figure 6.6)
and the belief error (Figure 6.8).

To summarize, we found that, as expected, the base line See All Follower was faster
in searching, and it tracked the person during the longest time. For searching we
found the HB-PF Searcher & Tracker to be faster than the HB-CR-POMCP Searcher
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Figure 6.7: The average belief error (using Eq. 5.11) when searching. The rows show
communication or not, and the columns the number of dynamic obstacles change. The
See All Follower does not use a belief and is therefore not mentioned.

& Tracker in most cases, and in general, there was an improvement when using com-
munication. Tracking showed no statistical difference between the methods (except for
the See All Follower) in recovery time; it only showed that having more seeker agents
resulted in better performance. And for the distance to the person while tracking,
the HB-PF Searcher & Tracker showed slightly better results. As weight combination
method for the HB-PF Searcher & Tracker when searching, the average was found to
be slightly faster, but the minimum resulted in a slightly lower belief error.

6.7 Real-life experiments

Now we discuss the results of the real experiments.
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Figure 6.8: The average belief error (using Eq. 5.11) when following. The rows show
communication or not, and the columns the number of dynamic obstacles. The See All
Follower does not use a belief and is therefore not mentioned.

6.7.1 Multi-agent HB-CR-POMCP Explorer and Multi-agent HB-PF
Explorer

These experiments were done during several weeks in the Telecos Square (version 3,
like in the simulations; Figure 6.9). Two robots were used, Tibi and Dabo, with the
Multi-agent HB-PF Explorer algorithm, since this was found to work best. We only
tried the version that used the minimum scores when using the observations in the PF
update phase.

Like the simulations in subsection 6.6.1, for the search behaviour, we measured
the time to encounter the person (by the first robot), and for the track behaviour, we
measured the recovery time and average distance to the person. Since we did not have
a ground truth available, we had to use the information obtained through the sensors
of the robots and the videos, which show the behaviour of the robots. The first had as
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6.7 Real-life experiments

consequence that the distance to the person was only measured when the person was
visible.

6.7.1.1 Analysis

Different types of experiments were done: exploration without a person, searching and
tracking, and tracking only; they took several weeks of testing and experimenting, from
which we obtained a total of about 3 hours of experimental data, and whereby the
robots drove each a total distance of about 3 km. A few persons were used during
the experiments in which they hid behind one of the obstacles, or just stood out in
the open. The robots tried to follow the person at a distance of 1 m, and they always
tried to maintain a minimum distance of 1 m to the other robot. The parameters used
during the experiments are shown in Table 6.1.

Table 6.2 gives an overview of the different statistics of all the experiments. The
distances shown were measured by the robot, i.e. the robot’s distances were obtained
using the localization positions; the distance that the person walked was also measured
by the robot and therefore, is not complete, since the person was not visible the whole
time.

The distance per robot indicates the total distance covered on average by the robots
during the experiments, the measured dist. person indicates the distance which was
covered by the person, while the robot measured it. The visibility indicates the time
the person was visible to a robot, the time connected indicates the time the robots
were exchanging data. The average distance to the person is the distance between the
robot and the person, measured when the person was visible. The number of dynamic
obstacles are the average number of people which were visible simultaneously. The
average time found is the time it took, on average, for a robot to find the person.
Finally, the average recovery time is the time it took to recover finding the person after
having lost it.

In the next subsections we will try to compare the results with the simulations using
the time found for the search experiments, and the recovery time and average distance
to the person. However, in the real experiments the robot sometimes stopped or slowed
down (due to obstacles, noisy signals or the low speed), therefore, the comparisons with
the simulations should be done with the distance. Since the speed in the simulations was
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6.7 Real-life experiments

Table 6.2: Statistics summary of the data recorded during the experiments. The aver-
ages (avg) are shown as average±standard deviation. ∗Measurements that include the
person location were only measured when the person was visible to a robot.

Ex
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To
ta
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Distance per robot [km] 1.2 1.2 0.7 3.2
Measured dist. person∗ [km] - 0.4 0.5 0.9
Total time [h] 1.1 1.2 0.9 3.2
Avg. visibility [%] 0 16.3 36.4 15.3
Avg. time connected [%] 95.0 79.5 85.8 86.6
Avg. distance to person∗ [m] - 8.4± 6.4 8.4± 5.6 8.3± 5.9
Avg. number dynamic obst.∗ 2.0± 1.5 0.6± 1.3 3.9± 2.8 1.9± 2.2
Avg. time found [s] - 106.8± 138.7 23.5± 42.5 72.9± 117.6
Avg. distance found [m] - 69.3± 74.0 6.2± 13.6 27.3± 53.3
Avg. time recovered [s] - 19.6± 39.0 12.0± 28.3 15.3± 33.6
Avg. distance recovered [m] - 8.5± 12.3 3.3± 9.3 3.6± 9.5

continuous (0.8 m per discrete time step), we can use it to calculate the distance covered,
and thereby comparing it to the distance found and recovery distance. Nevertheless,
we should take into account that we can not do a statistical comparison of the results,
since this would require many more experiments.

Figure 6.9 shows two recordings taken during the experiments: the snapshots, the
maps with the robot locations, and the belief maps of both robots. The belief map
shows that, when the person was detected, the localization was relatively precise (right),
but when it was not detected for some time, the location probability is more spread
(left). Further information and videos of the experiments can be found on:
http://alex.goldhoorn.net/thesis/st-multi/

Next we will explain the three different kind of experiments done followed by a short
discussion.

6.7.1.2 Exploration Only

In these experiments, we wanted to have a look at the search behaviour, and, therefore,
no person was present, which can be seen in Table 6.2, because there is no person
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distance. An exploration/search phase is shown in the left of Figure 6.9, where none
of the robots see the person, and both have a different belief. The experiments showed
that the robots clearly explored the whole environment several times, because the
probability that the person is in a not visible location, grew again after having passed
through it and not having found the person.

6.7.1.3 Search-and-track

In these experiments, a person was present and the robots started not seeing him/her.
The robots communicated the observations, and therefore, could update their belief
based on them. They also explored in different directions, looking for the person. As
soon as one robot saw the person, the other robot also went there. There were also
situations where the person was lost, because he went faster than the robot or because
one robot temporarily failed; however, the belief of the working robot still helped to
recover the person.

The distance covered by the robots until a person was found, was on average
69.3± 74.0 m, which is close to the distance covered in simulation, 67.5± 66.9 m (see
Figure 6.4 for the time with 0–10 dynamic obstacle, which was converted to distance).
For the tracking part, the recover distance was 8.5± 12.3 m, which is also close to the
simulation’s 5.06±7.5 m (converted to distances, see Figure 6.5). The average distance
to the person shows a low value (8.4 m on average), because only measurements were
taken when the person was detected by the robot.

6.7.1.4 Tracking

In the tracking experiments, the robots started with the person visible, and then fol-
lowed him/her, but due to speed or (dynamic) obstacles they lost the person out of
sight temporarily. Nonetheless, the person was found relatively quickly again, because
he/she was tracked using the belief.

For some of the tracking experiments, the robots had to detect the person first,
which took on average 23.5 s, but only 6.2 m was covered because the person was close.
The recover distance was 3.3 ± 9.3 m, which is also close to the values in simulation
(5.06± 7.5 m). The average distance to the person was a bit higher, because the robot
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6.7 Real-life experiments

Figure 6.9: Two different scenes during the experiments where the robots search
for and find the person. The large maps show the robots (blue and orange) and the
trajectories they executed; the red circle indicates that the person was detected at that
location, and a white circle means that the person was detected there. The smaller
maps represent the beliefs of Tibi (up) and Dabo (down): black squares are obstacles,
the blue circles are the robots, and the white to red squares means a low to high
probability of the person being there.

was relatively slow, and because having two robots tracking the person, requires them
to be at a minimum safe distance.

In the last experiment, the robots searched for the person, which was behind or
close to a group of people who occluded him/her, see Figure 6.1. Since there were two
robots they had a higher probability of seeing the person, but, when they did not see
the person, the belief grew in all directions with a higher probability on areas where the
robot probably would not see anything. Here, the dynamic obstacles (small light blue
circles in the belief map) were taken into account, and the particles propagated behind
static obstacles and dynamic obstacles. Due to the low resolution of the belief map
there was also a belief at the location of the other people and the robot. Note that,
the low resolution of the map was chosen such that we could group enough particles to
create a higher certainty.

156



6.8 Discussion

6.8 Discussion

The experiments showed that the robots explored the whole environment, thereby
taking into account the location of each other. And when tracking, it was also demon-
strated that maintaining the belief continuously is important when the person gets out
of sight.

Furthermore, the robustness of the multi-agent method was shown in experiments,
where one robot suddenly stopped (because of a hardware or software problem). Then,
the other robot recovered the person’s position, since it had been receiving the person’s
location until the other robot stopped and it did not receive any information from the
other robot. Therefore, using its own belief and observation, it only planned the next
goal for itself.

6.8.1 Comparison of Methods

Whereas we use a probabilistic approach to keep track of the probable locations of
the person, Hollinger et al. [2010] kept track of a list of contaminated nodes, thereby,
assuring the person to be found. Their irregular grid maps were converted to graphs,
where in each node they assumed full vision, whereas we use a probabilistic vision
probability. Next, they did not handle on-line changes in the environment, where
we do take into account dynamic obstacles. And finally, they only searched for the
person, but we also tracked him/her. In [Hollinger et al., 2015], they focused on data
fusion of the beliefs. In our method, we do not send the complete belief, but we send
the observations of the agents, and after having locally updated the belief, the most
probable locations are sent to the other agents.

Ahmad and Lima [2013] used a method similar to our PF approach to track an
object, but we use a fixed observation confidence, whereas they based it on the ob-
servation and localization confidence of the sender agent. We however, also share the
most probable locations and we do an explicit search of the person by exploring the
most probable locations.

The PF method of [Mottaghi and Vaughan, 2007] resembles greatly to our PF
method for the belief update method. But, instead of putting a zero weight when a
particle is inconsistent with the observation, we put a low weight to take into account
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that the observation could be a false negative detection. When the tracked person is
out of sight, they leave the previous weight, whereas, we put a fixed weight, based
on the consistency. While they use a potential field method to search for the target,
we make use an exploration method to go through the most probable locations of the
target.

Advantage of a centralized PF is that they take into account all observations and
no approximations are required, however, DPFs allow for more efficient models, which
are more scalable [Hlinka et al., 2013]. Nonetheless, in our real-life problem we are not
planning to use a very large amount of agents.

6.8.2 Real-World Issues

Finally, we will discuss some issues with the methods while doing the experiments.
First, the robots took the same path several times when they did exploration while
this—according to a human point of view—might not be the most efficient way, since
taking different paths would allow them to explore more. Our exploration algorithms,
however, do not take into account the path, only the goals are optimized, such that
the robots choose the closest most probable goal far from other robot’s goals. Taking
the path into account would require to rewrite the navigation algorithm, moreover, this
might be computationally complex when the number of agents is high. A potential so-
lution is given by [Charrow et al., 2013], who tried to optimise for maximal information
and therefore, indirectly take the paths into account.

Second, the belief maps of Tibi and Dabo were not always equal, even though they
received the same observations—if the communication worked—because there was a
random factor in the propagation of the particles, which caused a different spread of
the belief. When the robots were without communication, they could only use their
own observations and therefore, their beliefs would change. When they recovered the
communication they did not send historical information, and although this might be
a useful feature, it could be a large amount of information if the amount of seekers is
high. This could be tackled by a method like proposed in [Hollinger et al., 2015], where
they fused the beliefs by taking a weighted sum of the neighbours’ beliefs.

The robots sometimes were not able to drive up or down the ramp due to the
narrow passage and the inclined position, which made the horizontal lasers detect the
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floor as an object. In some cases, this caused the planner to avoid the ramp and take
the detour. In order to cope with ramps, 3D maps and navigation should be used.

6.9 Conclusions

In this chapter, we have presented an unified method for searching and tracking a
person using a group of mobile robots in a large continuous urban environment with
dynamic obstacles. The observations of the location of the person are obtained from a
leg detection algorithm that uses laser sensors and a visual marker detection algorithm
that uses a video camera to recognise the person. However, our method does not
require a specific sensor type, but it requires a localization of the person or an empty
observation—if not visible—as input; moreover, the observations of all the other agents
are used. At first, the belief of the person’s location is maintained using either the
Multi-agent HB-CR-POMCP Explorer or the Multi-agent HB-PF Explorer, then this
belief is segmented in a histogram matrix to obtain the locations with the highest
probability of the person being there. Thereafter, in the goal decision phase, the agents
are either sent directly to the location of the person if he/she was visible, otherwise
an exploration is done of the most probable locations taking into account the distance,
probability, and the other agent’s goals.

Simulations were done in a large urban environment, part of a campus, with up
to 100 dynamic obstacles moving around. For searching, in most cases, the Multi-
agent HB-PF Explorer was fastest in finding the person, and in particular using the
average weight, when using the observations of all agents. Also communication showed
significant improvement for searching. For tracking we did not find any significant
difference between the methods, neither when using communication. Furthermore,
when looking at the tracking distance, the PF methods enabled to get closer, and also
having multiple robots communicating reduced the average tracking distance. Finally,
the belief of the PF method was found to be closer to the real position.

The real experiments showed consistent results with the simulations and demon-
strated it to be a pragmatic method to search and track a person in the real world
with two robots. The search behaviour showed an exploration over the field, whereby
both robots were coordinating, and the communication between them also showed a
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more robust system, for example when one robot failed the other continued tracking
the person quickly. The method was also shown to be a robust tracker when several
people (dynamic obstacles) obstructed the vision temporarily of the robot, they were
able to find the person quickly again.
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Chapter 7

Conclusions and Future Work

In this thesis we have presented a search-and-track behaviour for mobile robots to
search and to track a person in an urban environment with one method.

We started with a Reinforcement Learning solution to learn the best strategy for the
seeker to find the hider, however, we quickly arrived to the computational complexity
limitations of the Mixed Observable Markov Decision Process (MOMDP) solvers. A
hierarchical model was introduced to reduce the state space greatly, but this did not
reduce the policy computation time sufficiently. Next, a Monte-Carlo solution was tried,
the POMCP, which we adapted to our problem, to work for continuous state space and
in real-time, resulting in the Continuous Real-time POMCP (CR-POMCP). We were
now able to work on large sized maps, in continuous space and in real-time, but we saw
that the movements of the real robot were not optimal, therefore, we decided to use
only the belief. The belief is a probability map of the person’s location, which is then
used to find the most probable location of the person. And as a next step, to decide
where to go to, the belief was used to get the highest probable location, instead of using
the policy’s action. Since the belief was updated using a Monte-Carlo-based method
of the POMCP, we also proposed the use of a PF to represent the belief. A basic PF
cannot be used directly, because a PF always needs an observation; therefore, we made
a version which does not need an observation. The particles of the PF were used as
the belief. Finally, the method was extended for multiple agents using an explorer to
distribute different potential locations of the person to the agents.

Summarizing, we have started with a RL method to learn the robot’s strategy to
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hide-and-seek, but we ended with a distributed cooperative PF-based method with ex-
ploration for one or more agents to search-and-track a person. See Table 7.1 for an
overview of the different methods and their abilities. All methods were tested exten-
sively in simulations and in real-life experiments, and the final methods—in specific the
Multi-agent HB-PF Explorer—are able to search and track in large environments,
continuous state space, with dynamic obstacles and with multiple agents.

Table 7.1: This tables shows the different methods proposed in the thesis with the
characteristics and references. The second column indicates the method on which it is
based; the Continuous, On-line, Dyn. obstacles and Multi-agents columns indicate if
the methods can handle these characteristics and if they have been tested with them;
the Largest Map column refers to the largest map size tested; and the last column
indicates the section in which the method is explained.
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Off-line MOMDP MOMDP 12× 12 4.6
Hierarchical MOMDP MOMDP X 12× 12 4.7
CR-POMCP POMCP X X 75× 69 5.5
HB-CR-POMCP POMCP X X 75× 69 5.6
CR-POMCP Searcher &
Tracker POMCP X X 75× 69 5.5,5.6.1

HB-CR-POMCP Searcher &
Tracker POMCP X X X 75× 69 5.6

HB-PF Searcher & Tracker PF X X X 75× 69 5.7
Multi-agent HB-CR-POMCP
Explorer POMCP X X X X 75× 69 6.4.1,6.5

Multi-agent HB-PF Explorer PF X X X X 75× 69 6.4.2,6.5

7.1 Future Work

The presented methods select a goal for the agent based on the belief, and for the
multi-agent version also based on the distance to the HB point and whether another
agent already has a search goal close to it. However, it does not take into account the
path to the goal. Currently the shortest path is taken to the location with the HB,
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but in some cases it might be better to take a slightly larger route to explore more
extensively, while going to the HB location. Especially when there are multiple agents,
we should avoid them to take the same path. Maximising the entropy can be part of a
solution for this problem, as done in [Charrow et al., 2013], or using a potential field
method that has an attractive force for particles [Mottaghi and Vaughan, 2007].

For the multi-agent methods, the robots continuously send observations to all other
agents, and since we do not have a large amount of robots, this is not a problem. Nev-
ertheless, this could be made more efficient when using for example some Distributed
Particle Filter (DPF) methods, as commented in [Hlinka et al., 2013], where informa-
tion is only sent to neighbours. As a second improvement for the multi-agent methods,
the recovery of information could be done after an agent has been disconnected from
the network, such that previous observations can be taken into account by all agents,
like done in [Hollinger et al., 2015].

For a more pragmatic system, a person recognition system should be used that does
not require artificial markers. Several person recognition systems do exist, e.g. the ones
used by [Granata and Bidaud, 2012, Linder et al., 2016, Martinson, 2014], but they
should be tested outside to see how well they work under different lighting conditions
and up to what distance.

Finally, the searching and tracking in an unknown environment is another important
next step, as already mentioned by [Kulich et al., 2016], who do searching and map
exploration at the same time
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