Mental Counting, working memory and time

Alex Goldhoorn (a.goldhoorn @ gmx.net)
University of Groningen Department of Artificial Intelligence,
Zernikepark 10, Groningen, The Netherlands

Abstract

This paper presents a model which has been made for a
mental counting task. The participants need to maintain two
or three counters and these counters are altered. Before the
run a target value is being shown. As soon as one of the
counters reaches the target value, the participant should press
a key. Dependent on the result, the interval time between two
changes of a counter is modified. The model tries to fit on the
number of presses too soon and too late (no key pressed). But
especially it tries to fit the trend of the interval time.

Introduction

There has been much research on working memory. One
task which uses the working memory and timing is the
mental count task (Larson et al. 1988).

In this research an experiment was performed in which
memory and timing are important aspects. A model was
made trying to show the same kind of results. This model is
based on some findings and formulas in ACT-R (Anderson
et al. 2004, Taatgen et al. 2006, ACT-R Research Group
2003).

Working Memory

The declarative memory in ACT-R exists of chunks.
These chunks can contain different types of information. A
chunk has an activation which represents the number of
times it has been used. The activation decays in time like a
human memory has a higher probability of not being able to
retrieve an item the longer ago the item was accessed.
When there are more chunks available the chunk with the
highest activation is chosen for retrieval.

In ACT-R production rules are required for using the
chunks (Anderson 2004). These chunks need production
rules to retrieve them from memory and to do something
with the chunks. In our model we did not use any explicit
production rules. The rules are preprogrammed into the
model.

Activation

Anderson et al. (2004) and Taatgen et al. (2006) give the
following activation formula:

A=B+Y WS, (1)
j

The activation (A;) contains two parts, first the baselevel
(By):

B =In| > 1" 2)
j=1

Here 1; is the time since the /" use of chunk i. And d is a
decay parameter and set to 0.5 in the ACT-R community
(Anderson 2004).

The second part of (1) contains the weightening of the
elements that are part of the current goal. S is the strength
of association between chuck j and i:

S, =S —In(fan)) 3)

Where S is a constant strength (default 2, Anderson 2004)
and fan; is the number of chunks associated with chunk ;.

To prevent the model from getting too complex we used a
slightly different activation function:

A=B+S5,+¢ )

The ACT-R tutorial (ACT-R Research Group 2003) also
mentions a noise part €. This noise makes it possible for the
system to choose a different chunk than the chunk with the
highest activation (without noise ¢). The noise was
calculated using:

)
eE=s5-In| — 5)
u

Where u is a random uniformly distributed value between
0 and I and s is the standard deviation.

Probability and time

The chunks with low activation have a low probability of
being retrieved (Anderson 2004):
1

= 14 Ao ©)

When the probability is greater than the retrieval threshold 7
it is possible to retrieve the value. When the activation A;
equals the threshold 7, the probability is 0.5.

Storing and retrieving a chunk in memory takes time.
Anderson (2004) mentions the time cycle times of the
buffers of 50 ms. But the retrieval time of chunk i can be
calculated:

T =Fe ™ (7
The variable F is the latency factor. And the value of F
has found to be dependent of 7 (Anderson 2004)
F =0.35¢" 8)

The variables F and f can be used to scale the times to the
activations.

i



Figure 1: The experiment.

The Experiment

The experiment we did was based on the Mental Counters
Test (Larson et al. 1988). This experiment was used to
research the accuracy of response. The participants had to
adjust three counters based on information on the screen. At
the end they had to choose the values of the counters in a
multiple choice list.

In our experiment the participants had to remember a
certain target value. This value was shown on an LCD
screen. This target was either three or four, but this was not
told to the participants. To start the experiment run they
needed to press the spacebar.

During a run the screen shows three or two horizontal
bars next to each other in the middle of the screen (Figure
1). Each bar represents a counter, which all start at zero.
When a box is shown above a bar it means that the counter
is increased by one, if it is shown bellow the bar it means a
decrease of one. Only one box is shown at a time.

When one of these counters reaches the target value, the
participant should press the spacebar. If he or she does not
press (i.e. a counter has reached the target, but the
participant did notice this) or too soon (i.e. he or she pressed
but no counter did reach the target yet) then the program
shows this as a message.

The rules

The time between the appearance of one and the next box
was named the interboxtime. This interval was changed
dependent upon the correctness of the participant. The
interval started at 750 ms. When a participant did not
answer or answered too soon, the interval was increased by
100 ms. When the participant answered correct, the interval
was decreased by 50 ms.

When the counter did reach the target value, then the box
was shown for two times the interboxtime. So this gave the
participant more time to respond.

The choice of two or three counters was random as was
the choice of the target (3 or 4) and which counter has the
highest likelihood of reaching this target.

The target counter is chosen with a chance of
0.54+0.5(1/n ) of selecting the target counter and

0.5(1/n

counters

counters

) of selecting another counter.

The chosen counter is increased with a chance of 7/9 and
decreased with a change of 2/9. But a counter never reaches
a negative value. Another constraint is that two succeeding
screens never show a box at the same place.

Init wm # working memory
for i = 1 to EXP_RUNS { # number of runs
create new expRun #experiment run
store target
counters = (0,0,0) or (0,0,-1)
store counters
while (expRun not reached target) {
get new box info
retrieve counterChunk
modify counterChunk
store counterChunk
retrieve target
if (modified counter >= target) {
press spacebar
break

}

if (spacebar pressed) {
if (max(counters)==target)
result = correct
else
results = too soon
} else
result = too late

Figure 2: The model in pseudo code.

The Model

The model was created using the statistical programming
language R (version 2.2.1). The model in pseudo code can
be seen in Figure 2.

The storage function first searches whether the chunk
already is available in the memory. If it is not yet available,
it is added. At each storage and retrieval the time f,, is
added to the prior usage list for that chunk. These times are
used in the baselevel function (2) where ¢ is set to:
t. =t t

J current pu

The model uses activation function (4) to get the chunk
with the highest activation from the working memory. Due
to the noise ¢ a different chunk can be chosen from time to
time.

The target and counters use different memory chunks and
do not influence each other. The counters are stored in one
chunk, all with length three. But when the experiment run
has only two counters the last counter in the chunk is set to
-1.

A run

A run starts by retrieving the number of counters and the
target value (new expRun in figure 2). Next the target value
and the initial value of the counters are stored into the
counters memory. This is (0,0,0) for three counters and
(0,0,-1) for two counters. This first part represents what a
participant does when he or she sees the screen with the
target value.



* subject1

subject 2
* subject3
“  subject4
* modelrun1
° model run 2

2000
I

interval time (ms)
1600

1000

500
I

trial

Figure 3: The interval times of the four subjects and two
model runs.

After this the run will continue by creating boxes which
represent a counter modification. The model retrieves the
counter chunk with the highest activations. It modifies the
specific counter and then stores it again. Then it will
retrieve the target value and compare it to the modified
counter. When the counter reaches the target it will stop the
run (‘press the spacebar’). And finally the run is evaluated.

During the run a time is maintained. Storage in working
memory, math, watching the screen and comparison adds
50 ms to the time. For the time of retrieval formula (7) was
used (with a minimum of 15 ms and a maximum of 130
ms). For each of these operations the time is compared to
the available interval time. When no more time is available
the run is stopped and the next run is started. In that case all
other operations were not performed and therefore the
counters in the working memory probably desynchronized
with the real counters.

Results

One way of comparison of the models we did was by
interval time. This time increases when the participant
makes errors and decreases otherwise. The experiment was
done with about 20 students, but due to circumstances only
four were usable in the study. These four are plotted in
Figure 3. One note that should be made is the starting at
1000 ms instead of 750 ms, this is due to a programming
error but this does not have a very big consequence as can
be seen in the figure. But subject 2 only has 35 trials and
therefore cannot converge.

As can be seen in the plot the two model runs follow a
same sort of trend as the subjects. But it is difficult to say
whether the model fits the data.

From Figure 3 can also be read if a trial was a good
response or a bad response, because a bad response
increases the interval time and a good response decreases it.
Only subject 3, 4 and model run 2 seem to converge to an
interval time of about 500 ms.

The number of times the participants pressed too soon
was 16.74% and 15.42% too late. The first run of the model
showed 20.00% too soon and 15.63% too late, the second
showed 20.00% too soon and 12.50% too late.

Mixed effect analysis

Some mixed effect analyses were done with the data of
the subjects.

The reaction time, which was not measured in the model,
seemed to be mainly related to the target [F(1,446)=25.71,
p<.0001], the number of counters [F(1,446)=6.29, p=.0125]
and the interval time [F(1,446)=21.27, p<.0001].

For only the correct trials the target [F(1,370)=7.65,
p<.01], number of counters [F(1,370)=11.12, p<.001] and
interval time [F(1,370)=11.67, p<.001] are important for the
reaction time. The incorrect trials only depend upon the
interval time [F(1,71)=18.22, p=.0001].

When we only look at the correctness, but without
looking at a time threshold, then only the target
[F(1,448)=29.15, p<.0001] is important for a good fit. This
is a bit odd, because for the reaction time also the number of
counters and interval time are important. And it seems
reasonable to assume that the correctness depends upon
among others the reaction time.

After also taking the time thresholds into account the time
[F(1,445)=124.99, p<.0001], target [F(1,445)=16.00,
p=-0001], number of counters [F(1,445)=2.76, p=.0971] and
the interval time [F(1,445)=8.23, p=.0043] are important for
the correctness.

When we also add the reaction time [F(1,443)=126.02,
p<.0001] the time [F(1,443)=23.46, p<.0001], target
[F(1,443)=12.87, p<.001] and number of counters
[F(1,443)=7.37, p<.01] are important. But not the interval
time, which is strongly correlated with the reaction time.
The index of the target is insignificant.

Discussion

The interval time was doubled when a counter reached the
target. This was perceived by a lot of the participants. And
some of the participants also said having used this time as
an indication of a counter reaching the target. This
phenomenon has not yet been implemented into the model.
But it may be an important contribution to the model and
add some insight into the perception of time.

When the interval time is very low, it is very likely for the
participant to not being able to rehearse the other counters
(then the one being modified). Therefore it should be
possible to change the activation of the individual counters.
This is now not possible because the three counters are
stored in one chunk.

The model could also be improved by adding associative
strengths S; for each chunk. The association strength
between chunks with sequential values should be higher
than with other chunks. So for example the strength between
(1,0,1) and (2,0,1) should be higher than between (1,0,1)
and (3,2,0).



There are different strategies which can be used to
perform the task. One example is rehearsal in which the
participant repeats the counters to increase the activation.
But at a certain interval time this may not be possible
anymore. Other participants have said to be using some
visual system in which they imagine the counters as piles of
blocks.

Conclusion

Mental counting is a task in which working memory is
important. Also the available time is important because
working memory is limited by the amount of information
and by time. These effects can be seen in the mental
counting task. Especially the time effect can be seen. This
has been implemented in the experiment as an interval time.
This interval time made it possible to get an indication of
the reaction time of the participant. But when the counter
did reach the target, the time to react was increased. This
allowed another effect to reveal namely the possibility that
the participants noticed the longer time to react and for that
reason press on the space bar.

The model which has been discussed in this paper shows
some similarities to the data, especially in the interval time
trend. But we must be cautious because there is very little
data to compare our model to.

A last point is that there are different strategies possible to
do this task. But we only implemented one of these
strategies. A future research might try to distinguish the
participants on the use of a certain strategy and make a
model for one or each of them.

References

ACT-R Research Group (2003). ACT-R: Tutorials.
http://act-r.psy.cmu.edu/tutorials/, =~ Carnegie = Mellon
University

Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S.,
Lebiere, C. & Qin, Y. (2004). An Integral Theory of the
Mind. Psychological Review, 111(4), 1036-1060.

Larson, E.G., Merrit, C.R. & Williams, S.E. (1988).
Information  Processing and Intelligence  Some
Implications of Task Complexity. Intelligence, 12, 131-
147

Taatgen, N.A., Lebiere, C. & Anderson, J.R. (2006).
Modeling paradigms in ACT-R. In R. Sun (ed.),
Cognition and Multi-Agent Interaction: From Cognitive
Modeling to Social Simulation (pp. 29-52). Cambridge
University Press.



