Evolving RoboCode Tanks

Alex Goldhoorn

Abstract—In this paper we discuss an experiment in which we
try to evolve the variables of a robot. A game named RoboCode,
made by IBM Alphaworks, has been used as a simulator. In this
simulator robot tanks fight against each other. The robot is
composed of behaviours which output a vector representing the
direction. This is based on the subsumption architecture and the
potential fields method. For the games we played battles in teams
of robots against other teams. All these behaviours contain
several variables. In the experiments these variables were
evolved. The goal of this research is to find out if the evolved
robots perform better than the robots which use fixed values for
the variables in the behaviours. Tournament selection was used
for selecting new generations and parents for crossover.

I. INTRODUCTION

E VOLUTION is something used by nature to improve the
organisms and adapt them to their environment, which
Charles Darwin wrote down in his work The Origin Of
Species. Evolution can also be used in robots. In robots the
genes can be seen as variables which we want to evolve.

In our experiment we want to find out whether evolution
can improve the robot compared to the use of a non-evolved
robot. More precise our research question is if the robots
perform better when their variable values are evolved
compared to fixed variables.

To do this experiment we used a simulation game of robot
tanks: RoboCode. In this game one or more robots can fight
against each other by shooting. In our experiments we used
robot teams and the battles were one team to another team.
The goal of the game is to get the highest score. This score
depends on, among others, how much bullets were a hit and
how many team members survived.

II. EVOLUTION

The idea that populations of organisms evolve by natural
selection was introduced in 1859 by Charles Darwin in his
work The Origin of Species. The concept of natural selection
is that nature selects individuals that are more likely to survive
in the future. Individuals that are less likely to survive in the
environment have a smaller chance of reproduction. Therefore
the fitter individuals survive.

In the 1960s artificial evolution was started by Holland and
Fogel in the USA and by Rechenberg in Germany (Pfeifer and
Scheier 1999). They created different evolution systems, but

Alex Goldhoorn is a master student of the department of Artificial
Intelligence, University of Groningen, The Netherlands (e-mail:
a.goldhoorn @student.rug.nl).

in this paper we use Genetic Algorithms (GAs).

In the experiment we tried to optimize the variable values
of robot behaviours (modules which operate certain parts of
the robot like firing). Evolution is used to search for an
optimal in a search space. When this space is too big then it
will take a long time to reach an optimum, if it is too small it
might not get to an optimum.

A. Genetic Algorithm

Evolution works with populations of individuals. These
individuals contain properties stored in genes. In our
experiments the genes contain variable values.

New individuals are generated by mutation and by the
combining of individuals of the current population, this is
called crossover. The best individuals can be chosen for
‘reproduction’, but there are more ways of selecting, see the
section selection.

To store the properties of individuals (e.g. the values of
variables) genes can be used. These genes can be represented
as a row of bits. By changing the values of the bits, the
individual changes. This is done by the crossover and
mutation steps in the evolution process as will be discussed
later in this section.

The genetic algorithm is listed in Figure 1 (Mitchell 1997).
The population of individuals is initialized with random
individuals. Then they need to be evaluated. This is done by a
fitness function. A fitness function can be different for every
type of problem. In this experiment the score returned by
RoboCode will be used as fitness function for an individual.

In the next step the evolution will continue until there is an
individual with a fitness value of at least the fitness threshold.

B. Selection

For the next generation (i.e. the new population) individuals
of the current generation need to be selected. Goldberg and
Kalyanmoy (1991) mention four commonly used selection
schemes:

1. proportionate reproduction;

2. roulette wheel selection (or ranking selection);

3. tournament selection;

4. Genitor (or “steady state”) selection.

Selection mechanism 2 and 3 will be shortly explained.

1) Roulette wheel selection

Holland introduced a method in which the individual’s
probability of being selected is proportional to its fitness
(Pfeifer and Scheier 1999).

GA(Fitness, Fitness_threshold, p, r, m)
Fitness: A function that calculates the fitness value of an individual.
Fitness_threshold: A threshold specifying the termination criterion.
p: The population size.
r: The fraction of the population to be replaced by crossover offspring.
m: The mutation rate.
e [Initialize population: P Generate p individuals at random
e Evaluate: For each & in P, compute Fitness(h)
e While [max,, Fitness(h)] < Fitness_threshold do
Create a new generation, Py:

o Select: Select (1 - r)p members of P to add to P,. To
be done by a selection mechanism (e.g. roulette
wheel selection or tournament selection).

o Crossover: Probabilistically select rp/2 pairs of
hypotheses from P, according to the selection
method. For each pair (h;, h;), produce offspring by
applying crossover. Add all offspring to Py.

o Mutate: Choose m percent of the members of P, with
uniform probability. For each, invert one randomly
selected bit in its representation.

o Update P & P;.

o For each & in P, compute Fitness(h).

e Return the hypothesis with the highest fitness from P.

Figure I The GA algorithm (Mitchell 1997) which returns a hypothesis with
a fitness value of at least Fitness_threshold.

The selection can be seen as a roulette wheel where every
individual has a part that is proportionate to its chance of
being selected. An advantage is that not only the individuals
with the highest fitness will be used, but also others have a
chance. This is important because the not so good individuals
might contain some good properties, but which do not appear
in combination with its other properties.

Disadvantages are that it needs to sort the population first
(on fitness), which requires computation time. And secondly
the selection pressure cannot be controlled.

The time complexity of sorting is O(n log n) (Goldberg and
Kalyanmoy 1991) with standard algorithms. The selection can
be done between O(n) and O(r’). Therefore the roulette wheel
selection method is in O(n log n).

2) Tournament selection

A selection method that has adjustable selection pressure
and does not need to be sorted is tournament selection
(Goldberg and Kalyanmoy 1991). The algorithm is simple:
first choose a number of individuals (the tournament size t)
randomly from the population and then select the best
individual from this group. And repeat this process as often as
individuals are needed. The selected individuals can be used
for reproduction. Tournaments are often held between pairs of
individuals (¢ = 2), also called binary tournament selection.

The selection pressure can be adjusted by changing the
tournament size. Increasing ¢ increases chance of being
selected for each individual. Therefore there is a greater
chance of selecting an individual with a higher fitness. So in
general the ‘solution’ will converge faster then when a greater
t is used, i.e. has a higher selection pressure (Legg et al.
2004). When r is smaller also individuals with a small fitness

a. Single point crossover:

Parents: 11010010101100 00011101100110

Children: [[01 { 00010010101100
b. Uniform crossover:

Parents: 11010010101100 00011101100110

Children: 0111 03110¢ 00010100100110
c. Mutation:

Parent: 11010010101100

Child: 11010010111100

Figure 2 Crossover and mutation on binary gene strings. Single point
crossover (a) where the genome is ‘cut’ at only one part. In uniform
crossover (b) the genomes can be cut at more places. And at mutation (c)
only one randomly chosen bit is flipped.

value will be selected. This improves the diversity, which is
important to prevent suboptimal solutions.

The time complexity of tournament selection is O(n)
(Goldberg and Kalyanmoy 1991), because each competition
requires the random selection of a constant number of
individuals of the population. The comparison among the
individuals can be done in linear time. Therefore it has time
complexity O(n).

Goldberg and Kalyanmoy (1991) found linear ranking
(roulette wheel selection) and a variant of binary tournament
selection to have identical performance, but tournament
selection is preferred due to its lower time complexity.

C. Crossover

Crossover is used to create a new genome (child) from two
other genomes, its parents. The idea is to replace one part of
the genome of parent 1 with information in the part at the
same place of the second parent. This is illustrated in Figure 2.

The most simple case is to replace only one part, this is
called single-point crossover (Figure 2a). But two points (two-
point crossover) or more (uniform crossover, Figure 2b) can
also be replaced.

D. Mutate

Another way to generate new individuals is by mutation.
This is simply flipping one (or more) chosen bit (see Figure
2¢). The bit or bits to be flipped are chosen randomly with a
certain chance. In Figure 1 m percent of the population is
chosen to be mutated.

III. ROBOT ARCHITECTURE

Robot architectures are: “software systems and
specifications that provide languages and tools for the
construction of behavior-based systems.” (Arkin 1998).

Robot —’| Fire Behaviour I Robot
Radar | Scan Behaviour Firing
M Find Target Behaviour
Team Mate | | | » Enemv
Positions —>| Communication | - information
Enemy B) -
information ——F| Goal Behaviour e » Communication
Sender
| Noise Behaviour e =
Communication Random Walk Behaviour o » Team Mate
Recerver | Positions
Robot Location S _
: Avoid Behaviour I L z Movement

Figure 3 The robot architecture. The robot (left and right) contains several information modules (enemy and team mate information) and operation modules
(firing, movement and communication). In the middle (italic) are the behaviours. Not all the robots have all the behaviours. The communication module is not

directly implemented as a behaviour, but it is used by several behaviours.

In the robots we used for our experiments we used a mix of
subsumption architecture and potential fields.

A. Behaviour-based robotics

In the GOFAI (Good Old Fashioned AI) the sense-think-act
cycle was used in robot processing, these systems reacted
rather slowly and are not (very) biological plausible. The
subsumption architecture was introduced by Brooks and
started the behaviour-based robotics paradigm.

Subsumption decomposes the robots control architecture in
a set of behaviours (Pfeifer and Scheier 1999). Each
behaviour can have several inputs (e.g. sensor readings) which
can be used by other behaviours. Each behaviour outputs
control actions, e.g. the speed and direction of the robot.

The behaviours are layered according to their relative
importance. Higher layers can subsume lower layers by
suppression of input or inhibition of output.

B. Potential Fields

Khatib (1985) and Krogh (1984) developed the potential
field method for generating smooth trajectories of the robot.
The method generates certain (vector)fields around certain
places. Here goals are the attractors and obstacles repulsors.
The result, the direction (and speed) of the robot, is calculated
by adding the vectors that are present at the robots location.

C. Behaviours with vector output

In our experiment the robots have different behaviours, but
they do not directly subsume each other. They only share
information such as enemies. Figure 3 shows the robot
architecture of our experiment robots.

Each behaviour outputs a vector containing a magnitude
and angle. The magnitude represents the speed, the angle
represents the direction it should turn. Some behaviours do
not output a vector, because they are not used for driving, but
for shooting or target detection.

The results vector, the speed and direction the robot will
move, is the sum of the vectors of all behaviours. But each
behaviour output is first multiplied with a weight for each
behaviour. This allows us to change the influence of different
behaviours on the overall result.

IV. RoBOCODE

RoboCode (Sing Li 2002) is a virtual battle simulator made
in Java originally created by IBM alphaWorks. Robots fight
against each other in the arena. This arena is a flat rectangular
field (Figure 4) with walls on all sides. There are no obstacles
in the field.

A. The robots

The robots can move over the field. They have a gun and a
radar. The amount of firepower is adjustable. The radar and

£ Robocode: Round 1 of 10, (10 FPS)

Baitle Robot_Cptions _Hep

Figure 4 RoboCode running a battle of two teams.

turret can move independently from the robot.

The robots have an energy level which indicates their
‘health’. An energy level of zero means that the robot is
disabled. A robot can increase its energy level by hitting
another robot, the higher the firepower, the more energy it will
gain. The robot loses energy by being hit by a bullet, another
robot or by hitting a wall. Also firing costs energy, and more
fire power costs more energy, but it gains energy when the
robot hits another robot by shooting it.

The radar detects other robots. In the Java program the
radar generates an event which can be used in the robot. The
radar provides the following information of another robot:
name, velocity, heading, remaining energy, the angular
difference between the other and itself and the distance to the
robot. The positions in RoboCode are absolute and the origin
(0,0) is at the lower left corner. Every robot can always get its
own location. Therefore it is easy to calculate the location of
another robot using your own position, the distance and the
angular difference.

B. Teams

The games can be between one or more robots, but it is also
possible to make a team of robots. Some advantages of using a
team of robots are: the possibility to cooperate and allocating
different goals to different robots (e.g. protecting another
robot). The robots in a team must check whether the robot is a
team member before the shoot.

The first member of a team in RoboCode starts with a
higher energy level (200 instead of the default 100). Also
droids start with a higher energy level (120), but they have
they do not have a radar. Therefore droids should use
communication to receive information about enemies from
other team members, which do have a radar.

C. The game

RoboCode uses time ticks in which every robot can do
computations for a limit amount of time. After each tick the
robots are moved (if their velocity is not zero) and the bullets
are moved. Also after every time tick the visual view of the
game is updated (if display is enabled).

The main goal of the game is to get the highest score. The
score is based on whether the robots survived, the amount of
damage it caused by bullets and by ramming (collision) and
some other bonuses.

A disadvantage of RoboCode is that it is not very realistic.
The radar has no noise and can detect almost everything about
the other robot including energy level. The field is perfect
rectangular without any obstacles and there is no fuel needed
for driving (except for energy). But still there are enough
reasons for using such an unrealistic simulation. The
simplicity is good for a relative easy robot design, but still
there are enough difficulties in defeating opponents, because
there are an ‘infinite’ amount of strategies. This makes it
interesting for evolving robots, because there are enough
variables which can change the outcome of a game.

robocode.battle.rules.gunCoolingRate=0.1
robocode.battle.rules.inactivityTime=100
robocode.battle.numRounds=3
robocode.battleField.width=3500
robocode.battleField.height=2500
robocode.placement.sd=150
robocode.placement .margin=500
robocode.options.maxScanRadius=1200

Figure 5 The settings used for the RoboCode battles which are set in the
battle.properties file. The last three settings are not available in the
standard RoboCode version.

D. Other projects

There have been done several projects and experiments
using RoboCode. Frgkjar et al. (2004) give a detailed report
from their creation of a RoboCode team. They used several
learning techniques among which genetic algorithms.
Eisenstein (2003) used evolved RoboCode tanks by encoding
a simple form of programming (TableRex) into genes, this
resulted in rather good robots which beat some good hand
made robots. Sipper et al. (2005) discuss their evolved game
players of three games, among which RoboCode.

V. METHOD

In our experiment we evolved the robots to improve their
performance in the RoboCode games. To detect the
improvement of the robot team by evolution, we need to
compare it to a default case. We used the robots with fixed
values for the variables to compare the evolved robots to.
Some of the fixed values were only slightly optimized by
hand.

A. The RoboCode Games

In our experiment we use a team of robot which competes
against other teams of the same composition. Our team exists
of one leader, two normal robots and six droids. The used
battle settings are listed in Figure 5. The default settings of
RoboCode were used, except for the field size which was
made 3500x2500. Besides that we used a slightly changed
version of RoboCode. This version contains an option to
change the maximum scan radius, this is the maximum
distance at which the radar can detect another robot. Another
added option is to let the teams start in a different corner and
not randomly spread across the field.

B. The Robots

All robots of our team maintain a list of the enemies and of
its team mates. From each enemy the position, speed, heading,
energy and time of the scan are stored. These can be used to
guess the new position of the robot at a later time, where we
assume that the robot moves linearly in the same direction
with the same speed. This method works best when the time
between scanning and using the guessed position (for example
when the robot wants to shoot) is short.

The positions of the team mates are used to prevent
colliding into the robots. Or to prevent shooting at the robot

when that robot is in the line of sight, i.e. an enemy is behind
it.

The enemy information and team mate positions are sent to
each team mate at every time tick. This way every robot,
including the droids, has information of each team mate and
every seen enemy. The advantage of the team is that they can
search enemies in a greater area than only one robot can.

All the robots have behaviours, which together make the
robot move, shoot and communicate.

C. The Behaviours

The robots have different behaviours which all do a part of
the total processing, a total view of all the behaviours can be
seen in Figure 3. Every behaviour can output a vector, which
has a magnitude and angle (i.e. velocity and direction), but not
all do. Several behaviour were made, each behaviour has one
or more variables which are evolved. These variables are
listed in Table 1. Every behaviour which outputs a vector also
has a weight, except for the avoid behaviour.

1) Avoid Behaviour

Avoid Behaviour avoids walls and obstacles by returning a
repulsive vector perpendicular to the faced on wall or object.
The turn distance variable is the distance (in pixels) to the
object or wall from which it needs to start turning to avoid it.
2) Fire Behaviour 1

This behaviour fires when the robot has an enemy (set by
scan behaviour or find target behaviour). Before it fires it
calculates the place where the enemy should be at the arrival
time of the bullet. Then it checks whether there is a team mate
in front of the enemy to prevent shooting team members. This
behaviour does not have any variables to be evolved.

3) Fire Behaviour 2

The second fire behaviour is a more advanced version of
the fire behaviour. It makes the fire power depending on the
distance of the enemy. As can be see in Table I the closer the
enemy the higher the fire power. Both fire behaviours were
tried during the evolution runs, but only one fire behaviour
was used at a time.

4) Scan Behaviour

This behaviour ‘listens’ to the radar and selects an enemy or
updates the enemy information. The closest enemy is selected.
When an enemy is selected it only scans in the direction of the
enemy, but when no new enemy information has been
received for a longer time it rescans the whole environment
(i.e. turns it radar a full circle). The time is defined by the
variable full scan time.

5) Find Target Behaviour

The find target behaviour finds a target from the list of
enemies, so it does not (directly) use a radar. It selects an
enemy based on its distance and its type (leader or normal
robot). The variables distance to normal and leader are the
maximum distances for the robot to select it as an enemy.

6) Goal Behaviour

This behaviour makes the enemy the goal to drive to. The
only evolution variable is the slow down distance, this is the
distance from the goal from where the robot should start to

TABLEI
BEHAVIOUR VARIABLES

Name (unit) Min. Max. Fixed Evolved
Avoid Behaviour
Turn distance (pixels) 0 1000 150 695
Fire Behaviour 1 (no genes)
Fire Behaviour 2
Close fire power (energy) 0 35 3.0 2.6
Medium fire power (energy) 0 3.5 2.0 1.9
Far fire power (energy) 0 3.5 1.0 2.2
Close distance (pixels) 0 500 20 209
Medium distance (pixels) 50 1500 100 550
Far distance (pixels) 100 3500 500 1286
Scan behaviour
Full scan time (time ticks) 1 10 4 5
Find target behaviour
Distance to normal (pixels) 0 2000 1000 1478
Distance to leader (pixels) 0 2000 1500 716
Goal behaviour
Slow down distance (pixels) 0 500 100 255
Weight 0 1 0.4 0.45
Noise behaviour
Max. velocity (pixels/tick) 0 750 31.3 378
Max. angle (rad) 0 2n /16 4.3
Weight 0 1 0.5 0.73
Random walk behaviour
Max. angle (rad) 0 2n b 3.3
Direction duration (time tick) 1 500 20 184
Weight 0 1 0.8 0.73

This table shows all the variables of the behaviours which were evolved. Min
and max are the bounds (minimum and maximum value) of the variables. The
evolved column shows the average values of the variables from seven
evolution runs.

slow down, to prevent overshooting the goal.
7) Noise Behaviour

The noise behaviour generates a noise vector, a vector with
random angle and magnitude. The maximum angle and
velocity for the noise vector are variables.
8) Random Walk Behaviour

This behaviour is comparable to the noise behaviour, but
random walk keeps the random vector for a certain time. This
time, the direction duration, and the maximum angle are
variables which were evolved.

All of the robot types have a slightly different collection of
behaviours. But for each robot all of its behaviours are
executed every time tick. The result vectors (if the behaviour
has one) are summed. But before summing them, the vector
magnitude is multiplied by a weight factor for the particular
behaviour as can be seen in Figure 3 (w,, w, and w,). In this
manner the influence of each behaviour can be changed.
These weights are also evolved. This result vector is checked
for the maximum speed. This is done to prevent it from
speeding too fast and thereby missing its goal or hitting a
robot or wall.

The summing of all behavioural vectors caused problems
when doing wall and robot avoidance. This occurred because
the avoid behaviour does not know the summed output of the

other behaviours. Because of this the avoid behaviour may
have too little influence and thereby still colliding into the
wall or the robot. To prevent this the vectors of all behaviours
are summed, except for the avoid behaviour. The avoid
behaviour then calculates the avoid vector based on the
summed vector of the other behaviours. In this order it is
possible for the avoid behaviour to adapt its magnitude vector
to the summed vector of the other behaviours.

D. Team Members

As said before our team exists of one leader robot, two
normal robots and six droids. The only difference between
these is that the droids do not have a radar and the others do.
They have a slightly different collection of behaviours.

All robots have: a noise behaviour, goal behaviour, fire
behaviour and random walk behaviour. The droid also has a
find target behaviour. The leader and normal robot have a
scan target behaviour, because they have a radar. The droid
does not have a radar and therefore it can only use the
received enemy information. The find target behaviour
searches the list of received enemy information for a target.

What might be noticed is that there is no difference between
the leader and the normal robot. This was not planned,
because we planned to add a coordinate or find strategy
behaviour for the leader. This behaviour has not been made
because the results were good enough for evolution without
such a behaviour.

E. Evolution

For the evolution of the robots, we created genomes for
each behaviour. Each of these genomes contained genes
which represented some variables in a behaviour, as listed in
Table I.

The evolution is done like in Figure 1, except for the use of
a fitness threshold. Instead the number of generations to
evolve was used. We did this to be able to do several
evolutions with different evolution parameters, but the
evolution system also allows us to increase or decrease the
number of generations during a run (based upon the results).

The number of individuals, the population size, is also
adjustable. An individual contains the genomes of all the
behaviours. An option was created for the evolution system to
either calculate the fitness (i.e. run RoboCode and analyze the
scores) for one randomly chosen individual per generation or
for all individuals in the generation.

For the battles opponent teams are needed. Therefore we
used the teams of the Robotics course of 2005/2006. Four
teams were used. In the configuration the opponents were
added to be used for evolution. Per opponent a chance of
being selected is set. This was done because some opponent
teams performed better than others.

The steps of the evolution program:

1) Initialization

At initialization the population is filled with the number of
individuals. The added individuals have genomes with random
gene values, but within the bounds of the variables as listed in

Table I. The fitness values of these individuals are all set to
zero.
2) Choose opponent

For every generation an opponent is randomly selected
from the list of opponents. The chance of being selected per
opponent can be set (in a configuration file).
3) Calculate fitness

The fitness calculation is done by first choosing an
individual. This can be done by iterating the population or by
randomly choosing an individual.

Next RoboCode is run with battles of our team (using the
genome from the individual) against the chosen opponent.

When RoboCode is finished, the results of the game are
used to calculate the fitness. Our goal is to make a team which
has a highest score in every battle. So the fitness function
should include this score. First we used a relative score (1),
with m the total score of our team and o the opponents score.

n (1)

m+o

f(m,o0)=

This fitness had the disadvantage of only showing the
distance in score distance. But it is more important to have a
higher score, independent of the other team. Therefore we
now use fitness function (2).

f(m0)=m—-a-o 2)

For this fitness function the score of our team is the most
important, but there is a penalty for a (high) score of the
opponent. This penalty depends on a which we set to 0.1 .

When an individual survives several generations, then it is
possible it has been chosen for several fitness calculations.
Because we do not want to lose the previous score of the
individual by overwriting the fitness of the individual, we use
a running average of length three. This is also important
because the performance of the opponents differ.

4) Selection

The selection mechanism selects half of the population
(n/2) for the new generation. We used a tournament selection,
because this is a proven selection mechanism and relatively
fast, as discussed in section II.

The tournament size ¢ can be set, but cannot be larger than
half of the population size (number of individuals), because
then it is not possible to select the last few individuals. To
search for the best tournament size, several sizes were tried.

The tournament selection is done by randomly selecting ¢
individuals and from that list selecting the best individual for
the new generation. This process is repeated until half of the
population of the new generation has been is generated.

10000

—— evolution

2000

— fixed

W

a000 ﬁ fh**\

e T

7000 ﬂJk

| I 1

4000

6000 -+ |
5000 I‘H W N A
{

A WUV L g
™, TN

average fitness

3000
I

G YA

2000
1000 "/

.
o[y
T

0 -

1 10 19 28 37 46 55 64 73 82 91 100109 118 127 136 145 154 163 172 181 1590 199

generation

Figure 6 The average fitness of the population during 200 generations. The red line corresponds to the fitness during 200 runs without evolution, i.e. the use of
fixed values. The blue line corresponds to the average fitness of 200 runs while evolving.

5) Crossover

From the half of the selected new population the other half
is generated by crossover. So n/2 times two ‘parents’ are
chosen for crossover.

The crossover is based on uniform crossover (Figure 2b). It
works by copying the genes one by one. The crossover starts
with the genes of parent 1, and per gene to be copied there is a
chance (0.05) of going to parent 2. So for example gene 1 of
parent 1 is copied, then genes 2-5 are copied from parent 2
and finally 6-10 are copied from parent 1. In this case the
child has six genes from parent 1 and four from parent 2.

6) Mutation

For the mutation a value is added to every gene. This value
is a random value with normal distribution
N (0, B(max—min)/2). Here f is a factor which we set

to 0.2, because we do not want big changes of the values. Max
and min are the upper and lower bound of the variable.

VI. RESULTS

The evolution has been done several times with different
configurations. When running all the individuals per
generation a small population size (around 10 individuals) was
used, this because it takes a lot of time per generation. We
evolved for about 100 up to 200 generations. When only one
randomly chosen individual was run per generation, the
population size was set to about 100.

An important question is whether the evolution works or
not. This can be answered by comparing the average
population fitness of an evolution to the average fitness
without evolution, but only the use of fixed values. The result
of this comparison can be seen in Figure 6. Here clearly can
be seen that the average fitness of the fixed values (red line) is
changing a lot. In contrast the blue line is much smoother and
is increasing until about generation 120. After which it slowly
flattens.

The evolution from Figure 6 was done with 100
individuals, 200 generations and a tournament size of 50. This
was about the best result we found.

Although the increasing line looks very promising, it must
be noticed that it is an average fitness value of the population.
Because all individuals start with a fitness of zero, the average
after the first generation is very small (only one run per
generation was done). Every new generation exists for the half
of new individuals, which also have a fitness of zero and thus
decreases the average fitness. The fitness of the best
individual of the last generation of that particular evolution
run was 22254.

The average values of seven evolution runs can be seen in
Table I (last column), here can be seen that some evolved
variables were quite close to the fixed values.

VII. CONCLUSION

From the experiments we can conclude that evolution can
create better performing robot teams in comparison to the
fixed variables. The best proof can be seen in Figure 6, as
discussed in the previous section.

Although there were several runs which improved the
robot, there were also quite some evolution runs with little
improvement of the robot. This is probably caused by the
parameter settings of the evolution. It could also be ‘luck’
when the evolution randomly initializes certain variables to a
close optimum.

In future research as well the robot as the evolution system
could be improved. Another selection mechanism could be
tested. And the robot could be improved by for example a
leader behaviour which orders other robots to go somewhere.
Another discussion is the RoboCode game. This is an easy to
use robot simulation platform, but it has some disadvantages.
A big disadvantage is that is quite slow, and because evolution
requires a lot of runs, it slows down the evolution process

enormously. Another disadvantage is that it contains several
small bugs, but these can be fixed by editing the RoboCode
sources, which are open-source.

REFERENCES

Arkin, R. C. (1998) Behavior-based robotics. The MIT Press, Cambridge
Massachusetts.

Eisenstein (2003) Evolving Robocode Tank Fighters. Technical Report AIM-
2003-023, Al Lab, Massachusetts Institute of Technology.

Frgkjer et al. (2004). Robocode; Development of a Robocode team. Student
report of the University of Aalborg, Denmark.

Goldberg, D. E. and Deb, K. (1991) A comparative analysis of selection
schemes used in genetic algorithms. Foundations of Genetic Algorithms, p.
69-93.

Legg, S., Hutter, M. and Kumar, A. (2004) Tournament versus Fitness
Uniform Selection. Technical Report IDSIA-04-04.

Mitchell, T. M. (1997) Machine Learning. McGraw-Hill International Edition.

Pfeifer, R. and Scheier, C. (1999) Understanding Intelligence. The MIT Press,
Cambridge Massachusetts.

Sing Li (2002) Rock 'em, sock 'em Robocode!,
http://www-128.ibm.com/developerworks/java/library/j-robocode/

Sipper, M., Azaria, Y., Hauptman, A. and Shichel Y. (2005) Designing an
evolutionary strategizing machine for game playing and beyond. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews.

