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Abstract—In this paper we discuss an experiment in which we 

try to evolve the variables of a robot. A game named RoboCode, 
made by IBM Alphaworks, has been used as a simulator. In this 
simulator robot tanks fight against each other. The robot is 
composed of behaviours which output a vector representing the 
direction. This is based on the subsumption architecture and the 
potential fields method. For the games we played battles in teams 
of robots against other teams. All these behaviours contain 
several variables. In the experiments these variables were 
evolved. The goal of this research is to find out if the evolved 
robots perform better than the robots which use fixed values for 
the variables in the behaviours. Tournament selection was used 
for selecting new generations and parents for crossover.  
 

I. INTRODUCTION 

VOLUTION is something used by nature to improve the 
organisms and adapt them to their environment, which 

Charles Darwin wrote down in his work The Origin Of 
Species.  Evolution can also be used in robots. In robots the 
genes can be seen as variables which we want to evolve.  

In our experiment we want to find out whether evolution 
can improve the robot compared to the use of a non-evolved 
robot. More precise our research question is if the robots 
perform better when their variable values are evolved 
compared to fixed variables. 

To do this experiment we used a simulation game of robot 
tanks: RoboCode. In this game one or more robots can fight 
against each other by shooting. In our experiments we used 
robot teams and the battles were one team to another team. 
The goal of the game is to get the highest score. This score 
depends on, among others, how much bullets were a hit and 
how many team members survived. 

II. EVOLUTION 

The idea that populations of organisms evolve by natural 
selection was introduced in 1859 by Charles Darwin in his 
work The Origin of Species. The concept of natural selection 
is that nature selects individuals that are more likely to survive 
in the future. Individuals that are less likely to survive in the 
environment have a smaller chance of reproduction. Therefore 
the fitter individuals survive.  

In the 1960s artificial evolution was started by Holland and 
Fogel in the USA and by Rechenberg in Germany (Pfeifer and 
Scheier 1999). They created different evolution systems, but 
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in this paper we use Genetic Algorithms (GAs). 
In the experiment we tried to optimize the variable values 

of robot behaviours (modules which operate certain parts of 
the robot like firing). Evolution is used to search for an 
optimal in a search space. When this space is too big then it 
will take a long time to reach an optimum, if it is too small it 
might not get to an optimum.  

A. Genetic Algorithm 
Evolution works with populations of individuals. These 

individuals contain properties stored in genes. In our 
experiments the genes contain variable values.  

New individuals are generated by mutation and by the 
combining of individuals of the current population, this is 
called crossover. The best individuals can be chosen for 
‘reproduction’, but there are more ways of selecting, see the 
section selection. 

To store the properties of individuals (e.g. the values of 
variables) genes can be used. These genes can be represented 
as a row of bits. By changing the values of the bits, the 
individual changes. This is done by the crossover and 
mutation steps in the evolution process as will be discussed 
later in this section.  

The genetic algorithm is listed in Figure 1 (Mitchell 1997). 
The population of individuals is initialized with random 
individuals. Then they need to be evaluated. This is done by a 
fitness function. A fitness function can be different for every 
type of problem. In this experiment the score returned by 
RoboCode will be used as fitness function for an individual.   

In the next step the evolution will continue until there is an 
individual with a fitness value of at least the fitness threshold.  

B. Selection 
For the next generation (i.e. the new population) individuals 

of the current generation need to be selected. Goldberg and 
Kalyanmoy (1991) mention four commonly used selection 
schemes:  

1. proportionate reproduction; 
2. roulette wheel selection (or ranking selection); 
3. tournament selection; 
4. Genitor (or “steady state”) selection. 
 

Selection mechanism 2 and 3 will be shortly explained.  
 
1) Roulette wheel selection 

Holland introduced a method in which the individual’s 
probability of being selected is proportional to its fitness 
(Pfeifer and Scheier 1999).  
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The selection can be seen as a roulette wheel where every 
individual has a part that is proportionate to its chance of 
being selected. An advantage is that not only the individuals 
with the highest fitness will be used, but also others have a 
chance. This is important because the not so good individuals 
might contain some good properties, but which do not appear 
in combination with its other properties. 

Disadvantages are that it needs to sort the population first 
(on fitness), which requires computation time. And secondly 
the selection pressure cannot be controlled. 

The time complexity of sorting is O(n log n) (Goldberg and 
Kalyanmoy 1991) with standard algorithms. The selection can 
be done between O(n) and O(n2). Therefore the roulette wheel 
selection method is in O(n log n). 
2) Tournament selection 

A selection method that has adjustable selection pressure 
and does not need to be sorted is tournament selection 
(Goldberg and Kalyanmoy 1991). The algorithm is simple: 
first choose a number of individuals (the tournament size t) 
randomly from the population and then select the best 
individual from this group. And repeat this process as often as 
individuals are needed. The selected individuals can be used 
for reproduction. Tournaments are often held between pairs of 
individuals (t = 2), also called binary tournament selection.  

The selection pressure can be adjusted by changing the 
tournament size. Increasing t increases chance of being 
selected for each individual. Therefore there is a greater 
chance of selecting an individual with a higher fitness. So in 
general the ‘solution’ will converge faster then when a greater 
t is used, i.e. has a higher selection pressure (Legg et al. 
2004). When t is smaller also individuals with a small fitness 

value will be selected. This improves the diversity, which is 
important to prevent suboptimal solutions.  

The time complexity of tournament selection is O(n) 
(Goldberg and Kalyanmoy 1991), because each competition 
requires the random selection of a constant number of 
individuals of the population. The comparison among the 
individuals can be done in linear time. Therefore it has time 
complexity O(n).  

Goldberg and Kalyanmoy (1991) found linear ranking 
(roulette wheel selection) and a variant of binary tournament 
selection to have identical performance, but tournament 
selection is preferred due to its lower time complexity. 

C. Crossover 
Crossover is used to create a new genome (child) from two 

other genomes, its parents. The idea is to replace one part of 
the genome of parent 1 with information in the part at the 
same place of the second parent. This is illustrated in Figure 2. 

The most simple case is to replace only one part, this is 
called single-point crossover (Figure 2a). But two points (two-
point crossover) or more (uniform crossover, Figure 2b) can 
also be replaced. 
D. Mutate 

Another way to generate new individuals is by mutation. 
This is simply flipping one (or more) chosen bit (see Figure 
2c). The bit or bits to be flipped are chosen randomly with a 
certain chance. In Figure 1 m percent of the population is 
chosen to be mutated. 

III. ROBOT ARCHITECTURE 

Robot architectures are: “software systems and 
specifications that provide languages and tools for the 
construction of behavior-based systems.” (Arkin 1998). 

GA(Fitness, Fitness_threshold, p, r, m) 
Fitness: A function that calculates the fitness value of an individual. 
Fitness_threshold: A threshold specifying the termination criterion. 
p: The population size. 
r: The fraction of the population to be replaced by crossover offspring. 
m: The mutation rate. 

• Initialize population: P Generate p individuals at random 
• Evaluate: For each h in P, compute Fitness(h) 
• While [maxh Fitness(h)] < Fitness_threshold do  

Create a new generation, Ps: 
o Select: Select (1 - r)p members of P to add to Ps. To 

be done by a selection mechanism (e.g. roulette 
wheel selection or tournament selection). 

o Crossover: Probabilistically select rp/2 pairs of 
hypotheses from P, according to the selection 
method. For each pair (h1, h2), produce offspring by 
applying crossover. Add all offspring to Ps. 

o Mutate: Choose m percent of the members of Ps with 
uniform probability. For each, invert one randomly 
selected bit in its representation. 

o Update P � Ps . 
o For each h in P, compute Fitness(h). 

• Return the hypothesis with the highest fitness from P. 
 
Figure 1  The GA algorithm (Mitchell 1997) which returns a hypothesis with 
a fitness value of at least Fitness_threshold.  

 
 
Figure 2  Crossover and mutation on binary gene strings. Single point 
crossover (a) where the genome is ‘cut’ at only one part. In uniform 
crossover (b) the genomes can be cut at more places. And at mutation (c) 
only one randomly chosen bit is flipped. 
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Figure 3  The robot architecture. The robot  (left and right) contains several information modules (enemy and team mate information) and operation modules 
(firing, movement and communication). In the middle (italic) are the behaviours. Not all the robots have all the behaviours. The communication module is not 
directly implemented as a behaviour, but it is used by several behaviours. 

 
 
In the robots we used for our experiments we used a mix of 

subsumption architecture and potential fields.  

A. Behaviour-based robotics 
In the GOFAI (Good Old Fashioned AI) the sense-think-act 

cycle was used in robot processing, these systems reacted 
rather slowly and are not (very) biological plausible. The 
subsumption architecture was introduced by Brooks and 
started the behaviour-based robotics paradigm. 

Subsumption decomposes the robots control architecture in 
a set of behaviours (Pfeifer and Scheier 1999). Each 
behaviour can have several inputs (e.g. sensor readings) which 
can be used by other behaviours. Each behaviour outputs 
control actions, e.g. the speed and direction of the robot. 

The behaviours are layered according to their relative 
importance. Higher layers can subsume lower layers by 
suppression of input or inhibition of output.  

B. Potential Fields 
Khatib (1985) and Krogh (1984) developed the potential 

field method for generating smooth trajectories of the robot. 
The method generates certain (vector)fields around certain 
places. Here goals are the attractors and obstacles repulsors. 
The result, the direction (and speed) of the robot, is calculated 
by adding the vectors that are present at the robots location.  

C. Behaviours with vector output 
In our experiment the robots have different behaviours, but 

they do not directly subsume each other. They only share 
information such as enemies. Figure 3 shows the robot 
architecture of our experiment robots.  

Each behaviour outputs a vector containing a magnitude 
and angle. The magnitude represents the speed, the angle 
represents the direction it should turn. Some behaviours do 
not output a vector, because they are not used for driving, but 
for shooting or target detection. 

The results vector, the speed and direction the robot will 
move, is the sum of the vectors of all behaviours. But each 
behaviour output is first multiplied with a weight for each 
behaviour. This allows us to change the influence of different 
behaviours on the overall result. 

IV. ROBOCODE 

RoboCode (Sing Li 2002) is a virtual battle simulator made 
in Java originally created by IBM alphaWorks. Robots fight 
against each other in the arena. This arena is a flat rectangular 
field (Figure 4) with walls on all sides. There are no obstacles 
in the field. 

A. The robots 
The robots can move over the field. They have a gun and a 

radar. The amount of firepower is adjustable. The radar and 

 

 
 
Figure 4  RoboCode running a battle of two teams. 
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turret can move independently from the robot.  
The robots have an energy level which indicates their 

‘health’. An energy level of zero means that the robot is 
disabled. A robot can increase its energy level by hitting 
another robot, the higher the firepower, the more energy it will 
gain. The robot loses energy by being hit by a bullet, another 
robot or by hitting a wall. Also firing costs energy, and more 
fire power costs more energy, but it gains energy when the 
robot hits another robot by shooting it.  

The radar detects other robots. In the Java program the 
radar generates an event which can be used in the robot. The 
radar provides the following information of another robot: 
name, velocity, heading, remaining energy, the angular 
difference between the other and itself and the distance to the 
robot. The positions in RoboCode are absolute and the origin 
(0,0) is at the lower left corner. Every robot can always get its 
own location. Therefore it is easy to calculate the location of 
another robot using your own position, the distance and the 
angular difference. 

B. Teams 
The games can be between one or more robots, but it is also 

possible to make a team of robots. Some advantages of using a 
team of robots are: the possibility to cooperate and allocating 
different goals to different robots (e.g. protecting another 
robot). The robots in a team must check whether the robot is a 
team member before the shoot.  

The first member of a team in RoboCode starts with a 
higher energy level (200 instead of the default 100). Also 
droids start with a higher energy level (120), but they have 
they do not have a radar. Therefore droids should use 
communication to receive information about enemies from 
other team members, which do have a radar. 

C. The game 
RoboCode uses time ticks in which every robot can do 

computations for a limit amount of time. After each tick the 
robots are moved (if their velocity is not zero) and the bullets 
are moved. Also after every time tick the visual view of the 
game is updated (if display is enabled). 

The main goal of the game is to get the highest score. The 
score is based on whether the robots survived, the amount of 
damage it caused by bullets and by ramming (collision) and 
some other bonuses.  

A disadvantage of RoboCode is that it is not very realistic. 
The radar has no noise and can detect almost everything about 
the other robot including energy level. The field is perfect 
rectangular without any obstacles and there is no fuel needed 
for driving (except for energy). But still there are enough 
reasons for using such an unrealistic simulation. The 
simplicity is good for a relative easy robot design, but still 
there are enough difficulties in defeating opponents, because 
there are an ‘infinite’ amount of strategies. This makes it 
interesting for evolving robots, because there are enough 
variables which can change the outcome of a game. 

D. Other projects 
There have been done several projects and experiments 

using RoboCode. Frøkjær et al. (2004) give a detailed report 
from their  creation of a RoboCode team. They  used several 
learning techniques among which genetic algorithms. 
Eisenstein (2003) used evolved RoboCode tanks by encoding 
a simple form of programming (TableRex) into genes, this 
resulted in rather good robots which beat some good hand 
made robots. Sipper et al. (2005) discuss their evolved game 
players of three games, among which RoboCode. 

 

V. METHOD 

In our experiment we evolved the robots to improve their 
performance in the RoboCode games. To detect the 
improvement of the robot team by evolution, we need to 
compare it to a default case. We used the robots with fixed 
values for the variables to compare the evolved robots to. 
Some of the fixed values were only slightly optimized by 
hand. 

A. The RoboCode Games 
In our experiment we use a team of robot which competes 

against other teams of the same composition. Our team exists 
of one leader, two normal robots and six droids. The used 
battle settings are listed in Figure 5. The default settings of 
RoboCode were used, except for the field size which was 
made 3500×2500. Besides that we used a slightly changed 
version of RoboCode. This version contains an option to 
change the maximum scan radius, this is the maximum 
distance at which the radar can detect another robot. Another 
added option is to let the teams start in a different corner and 
not randomly spread across the field. 

B. The Robots 
All robots of our team maintain a list of the enemies and of 

its team mates. From each enemy the position, speed, heading, 
energy and time of the scan are stored. These can be used to 
guess the new position of the robot at a later time, where we 
assume that the robot moves linearly in the same direction 
with the same speed. This method works best when the time 
between scanning and using the guessed position (for example 
when the robot wants to shoot) is short. 

The positions of the team mates are used to prevent 
colliding into the robots. Or to prevent shooting at the robot 

robocode.battle.rules.gunCoolingRate=0.1 
robocode.battle.rules.inactivityTime=100 
robocode.battle.numRounds=3 
robocode.battleField.width=3500 
robocode.battleField.height=2500 
robocode.placement.sd=150 
robocode.placement.margin=500 
robocode.options.maxScanRadius=1200 

 
Figure 5  The settings used for the RoboCode battles which are set in the 
battle.properties file. The last three settings are not available in the 
standard RoboCode version. 
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when that robot is in the line of sight, i.e. an enemy is behind 
it. 

The enemy information and team mate positions are sent to 
each team mate at every time tick. This way every robot, 
including the droids, has information of each team mate and 
every seen enemy. The advantage of the team is that they can 
search enemies in a greater area than only one robot can.  

All the robots have behaviours, which together make the 
robot move, shoot and communicate. 

C. The Behaviours 
The robots have different behaviours which all do a part of 

the total processing, a total view of all the behaviours can be 
seen in Figure 3. Every behaviour can output a vector, which 
has a magnitude and angle (i.e. velocity and direction), but not 
all do.  Several behaviour were made, each behaviour has one 
or more variables which are evolved. These variables are 
listed in Table I. Every behaviour which outputs a vector also 
has a weight, except for the avoid behaviour.  
1) Avoid Behaviour 

Avoid Behaviour avoids walls and obstacles by returning a 
repulsive vector perpendicular to the faced on wall or object. 
The turn distance variable is the distance (in pixels) to the 
object or wall from which it needs to start turning to avoid it. 
2) Fire Behaviour 1  

This behaviour fires when the robot has an enemy (set by 
scan behaviour or find target behaviour).  Before it fires it 
calculates the place where the enemy should be at the arrival 
time of the bullet. Then it checks whether there is a team mate 
in front of the enemy to prevent shooting team members. This 
behaviour does not have any variables to be evolved. 
3) Fire Behaviour 2 

The second fire behaviour is a more advanced version of 
the fire behaviour. It makes the fire power depending on the 
distance of the enemy. As can be see in Table I the closer the 
enemy the higher the fire power. Both fire behaviours were 
tried during the evolution runs, but only one fire behaviour 
was used at a time. 
4) Scan Behaviour 

This behaviour ‘listens’ to the radar and selects an enemy or 
updates the enemy information. The closest enemy is selected. 
When an enemy is selected it only scans in the direction of the 
enemy, but when no new enemy information has been 
received for a longer time it rescans the whole environment 
(i.e. turns it radar a full circle). The time is defined by the 
variable full scan time. 
5) Find Target Behaviour 

 The find target behaviour finds a target from the list of 
enemies, so it does not (directly) use a radar. It selects an 
enemy based on its distance and its type (leader or normal 
robot).  The variables distance to normal and leader are the 
maximum distances for the robot to select it as an enemy. 
6) Goal Behaviour 

This behaviour makes the enemy the goal to drive to. The 
only evolution variable is the slow down distance, this is the 
distance from the goal from where the robot should start to 

slow down, to prevent overshooting the goal. 
7) Noise Behaviour 

The noise behaviour generates a noise vector, a vector with 
random angle and magnitude. The maximum angle and 
velocity for the noise vector are variables. 
8) Random Walk Behaviour 

This behaviour is comparable to the noise behaviour, but 
random walk keeps the random vector for a certain time. This 
time, the direction duration, and the maximum angle are 
variables which were evolved. 
 

All of the robot types have a slightly different collection of 
behaviours. But for each robot all of its behaviours are 
executed every time tick. The result vectors (if the behaviour 
has one) are summed. But before summing them, the vector 
magnitude is multiplied by a weight factor for the particular 
behaviour as can be seen in Figure 3 (wg, wn and wr). In this 
manner the influence of each behaviour can be changed. 
These weights are also evolved. This result vector is checked 
for the maximum speed. This is done to prevent it from 
speeding too fast and thereby missing its goal or hitting a 
robot or wall. 

The summing of all behavioural vectors caused problems 
when doing wall and robot avoidance. This occurred because 
the avoid behaviour does not know the summed output of the 

TABLE I 
BEHAVIOUR VARIABLES 

Name (unit) Min. Max. Fixed Evolved 

Avoid Behaviour     
Turn distance (pixels) 0 1000 150 695 
Fire Behaviour 1 (no genes)     
Fire Behaviour 2     
Close fire power (energy) 0 3.5 3.0 2.6 
Medium fire power (energy) 0 3.5 2.0 1.9 
Far fire power (energy) 0 3.5 1.0 2.2 
Close distance (pixels) 0 500 20 209 
Medium distance (pixels) 50 1500 100 550 
Far distance (pixels) 100 3500 500 1286 
Scan behaviour     
Full scan time (time ticks) 1 10 4 5 
Find target behaviour     
Distance to normal (pixels) 0 2000 1000 1478 
Distance to leader (pixels) 0 2000 1500 716 
Goal behaviour     
Slow down distance (pixels) 0 500 100 255 
Weight 0 1 0.4 0.45 
Noise behaviour     
Max. velocity (pixels/tick) 0 750 31.3 378 
Max. angle (rad) 0 2� �/16 4.3 
Weight 0 1 0.5 0.73 
Random walk behaviour     
Max. angle (rad) 0 2� � 3.3 
Direction duration (time tick) 1 500 20 184 
Weight 0 1 0.8 0.73 
 
This table shows all the variables of the behaviours which were evolved. Min 
and max are the bounds (minimum and maximum value) of the variables. The 
evolved column shows the average values of the variables from seven 
evolution runs.  
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other behaviours. Because of this the avoid behaviour may 
have too little influence and thereby still colliding into the 
wall or the robot. To prevent this the vectors of all behaviours 
are summed, except for the avoid behaviour. The avoid 
behaviour then calculates the avoid vector based on the 
summed vector of the other behaviours. In this order it is 
possible for the avoid behaviour to adapt its magnitude vector 
to the summed vector of the other behaviours. 

D. Team Members 
As said before our team exists of one leader robot, two 

normal robots and six droids. The only difference between 
these is that the droids do not have a radar and the others do. 
They have a slightly different collection of behaviours.  

All robots have: a noise behaviour, goal behaviour, fire 
behaviour and random walk behaviour. The droid also has a 
find target behaviour. The leader and normal robot have a 
scan target behaviour, because they have a radar. The droid 
does not have a radar and therefore it can only use the 
received enemy information. The find target behaviour 
searches the list of received enemy information for a target. 

What might be noticed is that there is no difference between 
the leader and the normal robot. This was not planned, 
because we planned to add a coordinate or find strategy 
behaviour for the leader. This behaviour has not been made 
because the results were good enough for evolution without 
such a behaviour. 

E. Evolution 
For the evolution of the robots, we created genomes for 

each behaviour. Each of these genomes contained genes 
which represented some variables in a behaviour, as listed in 
Table I. 

The evolution is done like in Figure 1, except for the use of 
a fitness threshold. Instead the number of generations to 
evolve was used. We did this to be able to do several 
evolutions with different evolution parameters, but the 
evolution system also allows us to increase or decrease the 
number of generations during a run (based upon the results). 

The number of individuals, the population size, is also 
adjustable. An individual contains the genomes of all the 
behaviours. An option was created for the evolution system to 
either calculate the fitness (i.e. run RoboCode and analyze the 
scores) for one randomly chosen individual per generation or 
for all individuals in the generation. 

For the battles opponent teams are needed. Therefore we 
used the teams of the Robotics course of 2005/2006. Four 
teams were used. In the configuration the opponents were 
added to be used for evolution. Per opponent a chance of 
being selected is set. This was done because some opponent 
teams performed better than others.  

The steps of the evolution program: 
1) Initialization 

At initialization the population is filled with the number of 
individuals. The added individuals have genomes with random 
gene values, but within the bounds of the variables as listed in 

Table I. The fitness values of these individuals are all set to 
zero. 
2) Choose opponent 

For every generation an opponent is randomly selected 
from the list of opponents. The chance of being selected per 
opponent can be set (in a configuration file). 
3) Calculate fitness 

The fitness calculation is done by first choosing an 
individual. This can be done by iterating the population or by 
randomly choosing an individual. 

Next RoboCode is run with battles of our team (using the 
genome from the individual) against the chosen opponent. 

When RoboCode is finished, the results of the game are 
used to calculate the fitness. Our goal is to make a team which 
has a highest score in every battle. So the fitness function 
should include this score. First we used a relative score (1), 
with m the total score of our team and o the opponents score. 

 

( , )
m

f m o
m o

=
+

             (1) 

 
This fitness had the disadvantage of only showing the 

distance in score distance. But it is more important to have a 
higher score, independent of the other team. Therefore we 
now use fitness function (2). 

 
( , )f m o m oα= − ⋅             (2) 

 
For this fitness function the score of our team is the most 

important, but there is a penalty for a (high) score of the 
opponent. This penalty depends on � which we set to 0.1 . 

When an individual survives several generations, then it is 
possible it has been chosen for several fitness calculations. 
Because we do not want to lose the previous score of the 
individual by overwriting the fitness of the individual, we use 
a running average of length three. This is also important 
because the performance of the opponents differ.  
4) Selection 

The selection mechanism selects half of the population 
(n/2) for the new generation. We used a tournament selection, 
because this is a proven selection mechanism and relatively 
fast, as discussed in section II.  

The tournament size t can be set, but cannot be larger than 
half of the population size (number of individuals), because 
then it is not possible to select the last few individuals.  To 
search for the best tournament size, several sizes were tried.  

The tournament selection is done by randomly selecting t 
individuals and from that list selecting the best individual for 
the new generation. This process is repeated until half of the 
population of the new generation has been is generated. 
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Figure 6  The average fitness of the population during 200 generations. The red line corresponds to the fitness during 200 runs without evolution, i.e. the use of 
fixed values. The blue line corresponds to the average fitness of 200 runs while evolving. 
 
 
5) Crossover 

From the half of the selected new population the other half 
is generated by crossover. So n/2 times two ‘parents’ are 
chosen for crossover.  

The crossover is based on uniform crossover (Figure 2b). It 
works by copying the genes one by one. The crossover starts 
with the genes of parent 1, and per gene to be copied there is a 
chance (0.05) of going to parent 2. So for example gene 1 of 
parent 1 is copied, then genes 2-5 are copied from parent 2 
and finally 6-10 are copied from parent 1. In this case the 
child has six genes from parent 1 and four from parent 2. 
6) Mutation 

For the mutation a value is added to every gene. This value 
is a random value with normal distribution 

(0, (max min) / 2)N β − . Here � is a factor which we set 
to 0.2, because we do not want big changes of the values. Max 
and min are the upper and lower bound of the variable. 

VI. RESULTS 

The evolution has been done several times with different 
configurations. When running all the individuals per 
generation a small population size (around 10 individuals) was 
used, this because it takes a lot of time per generation. We 
evolved for about 100 up to 200 generations. When only one 
randomly chosen individual was run per generation, the 
population size was set to about 100.  

An important question is whether the evolution works or 
not. This can be answered by comparing the average 
population fitness of an evolution to the average fitness 
without evolution, but only the use of fixed values. The result 
of this comparison can be seen in Figure 6. Here clearly can 
be seen that the average fitness of the fixed values (red line) is 
changing a lot. In contrast the blue line is much smoother and 
is increasing until about generation 120. After which  it slowly 
flattens.  

The evolution from Figure 6 was done with 100 
individuals, 200 generations and a tournament size of 50. This 
was about the best result we found.  

Although the increasing line looks very promising, it must 
be noticed that it is an average fitness value of the population. 
Because all individuals start with a fitness of zero, the average 
after the first generation is very small (only one run per 
generation was done). Every new generation exists for the half 
of new individuals, which also have a fitness of zero and thus 
decreases the average fitness. The fitness of the best 
individual of the last generation of that particular evolution 
run was 22254. 

The average values of seven evolution runs can be seen in 
Table I (last column), here can be seen that some evolved 
variables were quite close to the fixed values.  

VII. CONCLUSION 

From the experiments we can conclude that evolution can 
create better performing robot teams in comparison to the 
fixed variables. The best proof can be seen in Figure 6, as 
discussed in the previous section.  

Although there were several runs which improved the 
robot, there were also quite some evolution runs with little 
improvement of the robot. This is probably caused by the 
parameter settings of the evolution. It could also be ‘luck’ 
when the evolution randomly initializes certain variables to a 
close optimum.  

In future research as well the robot as the evolution system 
could be improved. Another selection mechanism could be 
tested. And the robot could be improved by for example a 
leader behaviour which orders other robots to go somewhere. 
Another discussion is the RoboCode game. This is an easy to 
use robot simulation platform, but it has some disadvantages. 
A big disadvantage is that is quite slow, and because evolution 
requires a lot of runs, it slows down the evolution process 
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enormously. Another disadvantage is that it contains several 
small bugs, but these can be fixed by editing the RoboCode 
sources, which are open-source. 
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