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Global Localization Method

Based on Ramisa (2006)
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map panoramas N

Maximum number of inliers
determines current location (room)

Problem: ambiguity
Solution: go to location of panorama e T
origin T
hlfﬁf\
N

=9




Homing

o Homing based on insect navigation
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o Two types
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Average Landmark Vector
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ALV Homing

. Average position
of landmarks
viewed from the
home position

ALV(H)




ALV Homing

. All ALVs have to
be aligned to a
common reference
frame (compass)

ALV(H)

ALV(R)




ALV Homing

. Average position
of landmarks
viewed from the
robot position ALV(H)

ALV(R)




ALV Homing

. The H vector
points towards
home




ALV Homing

. The H vector
points towards
home

ALV(R)

. By iteratively
repeating this
procedure the robot
returns home




ALV Homing

. The H vector

points towards
home

. By iteratively
repeating this
procedure the robot
returns home



Panorama

But we used:

Normally used:




Interest Points

o Visual features instead of landmarks

o Robustness required to
Position change
Orientation
(relative) size




Difference Of Gaussian

o Difference of Guassian (DoG)
(Lowe, 1999, 2004)

Scale-Covariant region detector
Detects blobs and corners




MSER

o Maximally Stable Extremal Regions

o Extremal regions: regions with
higher/lower intensity than pixels at
border

o Maximally stable:
when intensity
changes region
still there

o Relatively fast




Simulation

o Simulation as first test robustness
o Parameters:

Room size

Noise wall ¢ R
# features —
Remove/add =nd
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Simulation Results

Parameter Average Success rate

Removing 50% 85%

<=1 mm noise (std.dev.) 90%

To 0,05 m noise (std.dev.) 5%

500 or more features 100%

20 features 50%-80%
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Real world experiments

o Three rooms used
o Robot
o Panorama

Pioneer 2AT




Experiments

O

Constant orientation

Matrix of panoramas in different rooms
To verify the ALV homing method

Only home direction compared

2 types of features detectors:

DoG
MSER

In order to Compare: Landmarks



Landmarks

o To compare the method
with DoG and MSER

o Binary code:
Bar at left: O
Bar at right: 1
32 combinations




Results: Robot laboratory

o Size: 10.bmx11.2 m
o 38 panoramas
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Mean Error 35.60° 27.84° 14.88° or i
Median Error | 22.85° 16.03° 10.17° . | | | | | | |
Std Dev 36.67° 3551°  14.86° R
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Results: Square room

MSER

o Size:4.0mx3.4m
o 3 panoramas

o MSER (in map)

DoG MSER
Mean Error 13.78° 9.65°
Median Error 12.00° 12.03°
Std Dev 11.31° 7.84°
Best home 138 138
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Results: Corridor

o Size: 2.5 mx 22.5m
o 6 panoramas

o MSER (in map) DoG  MSER
Mean Error 56.26° 52.67°
Median Error 44 .58° 35.71°
Std Dev 43.64° 44.90°
Best home 203 200
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Results: Corridor




Improvements

o Using lower half of the panorama:

Contains closer objects
more square (?)

Only significant better result in the
Robot laboratory




Vardy’'s Image database

Bielefeld University




Alignment

O

Compass
Odometry

Franz et al. (1998): estimate by
shifting panorama

Use feature detectors



Alignment

o Histogram of features

200 .
panorama 1
100 .
U | | | |
0 50 100 150 200 250 300 350 400
¥ (deg)
200 I 1 T T T T T
panorama 2
100 .
D | 1 1 | _A.a-—,_l - A
0 50 100 150 200 250 300 350 400

¥ (degq)



Overall real world results

o MSER outperformed DoG

o No relation found between distance
and error

o Camera to parabolic mirror delivers
good results

o Rooms:
Worst result in corridor




Conclusions

o When robot has several hypotheses
Homing can be used to return to most
ikely position

If this is the correct hypothesis
success

Otherwise, retry

Main conclusion:
ambiguity problem in localization method ‘solved’




Conclusions

o ALV homing:

Simple, fast, robust and low in memory
requirements

But requires orientation
Local navigation

o Can make use of different camera’s

o Robustness also thanks to feature
detectors
Advantage: no (artificial) landmarks




Future work

o Navigation experiments
o Alignment method
o Panoramas
Use parabolic mirror [ faster

o Cover larger distances
Smith et al. (2006): waypoints
Solution to ‘long room problem’
o Improvement of the ALV homing
method:
Depth, e.qg. stereo




Growing Neural Gas
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Bachelor project: navigation

Growing Neural Gas
Comparable to Kohonen network
Nodes can be added/removed

Different sensors:

Camera (hsv)
Sonar
Odometry

Parameter optimalization method
Better than baseline (random)
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